summaryrefslogtreecommitdiff
path: root/Kernel/Random.cpp
blob: 6f77f40873498daa67993783cc3a6d58edc6b510 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 * Copyright (c) 2020, Peter Elliott <pelliott@ualberta.ca>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Singleton.h>
#include <Kernel/Arch/x86/Processor.h>
#include <Kernel/Devices/RandomDevice.h>
#include <Kernel/Random.h>
#include <Kernel/Sections.h>
#include <Kernel/Time/HPET.h>
#include <Kernel/Time/RTC.h>
#include <Kernel/Time/TimeManagement.h>

namespace Kernel {

static Singleton<KernelRng> s_the;
static Atomic<u32, AK::MemoryOrder::memory_order_relaxed> s_next_random_value = 1;

KernelRng& KernelRng::the()
{
    return *s_the;
}

UNMAP_AFTER_INIT KernelRng::KernelRng()
{
    bool supports_rdseed = Processor::current().has_feature(CPUFeature::RDSEED);
    bool supports_rdrand = Processor::current().has_feature(CPUFeature::RDRAND);
    if (supports_rdseed || supports_rdrand) {
        dmesgln("KernelRng: Using RDSEED or RDRAND as entropy source");
        for (size_t i = 0; i < resource().pool_count * resource().reseed_threshold; ++i) {
            u32 value = 0;
            if (supports_rdseed) {
                asm volatile(
                    "1:\n"
                    "rdseed %0\n"
                    "jnc 1b\n"
                    : "=r"(value));
            } else {
                asm volatile(
                    "1:\n"
                    "rdrand %0\n"
                    "jnc 1b\n"
                    : "=r"(value));
            }

            this->resource().add_random_event(value, i % 32);
        }
    } else if (TimeManagement::the().can_query_precise_time()) {
        // Add HPET as entropy source if we don't have anything better.
        dmesgln("KernelRng: Using HPET as entropy source");

        for (size_t i = 0; i < resource().pool_count * resource().reseed_threshold; ++i) {
            u64 hpet_time = HPET::the().read_main_counter_unsafe();
            this->resource().add_random_event(hpet_time, i % 32);
        }
    } else {
        // Fallback to RTC
        dmesgln("KernelRng: Using RTC as entropy source (bad!)");
        auto current_time = static_cast<u64>(RTC::now());
        for (size_t i = 0; i < resource().pool_count * resource().reseed_threshold; ++i) {
            this->resource().add_random_event(current_time, i % 32);
            current_time *= 0x574au;
            current_time += 0x40b2u;
        }
    }
}

void KernelRng::wait_for_entropy()
{
    SpinlockLocker lock(get_lock());
    if (!resource().is_ready()) {
        dbgln("Entropy starvation...");
        m_seed_queue.wait_forever("KernelRng");
    }
}

void KernelRng::wake_if_ready()
{
    VERIFY(get_lock().is_locked());
    if (resource().is_ready()) {
        m_seed_queue.wake_all();
    }
}

size_t EntropySource::next_source { static_cast<size_t>(EntropySource::Static::MaxHardcodedSourceIndex) };

static void do_get_fast_random_bytes(u8* buffer, size_t buffer_size)
{

    union {
        u8 bytes[4];
        u32 value;
    } u;
    size_t offset = 4;
    for (size_t i = 0; i < buffer_size; ++i) {
        if (offset >= 4) {
            auto current_next = s_next_random_value.load();
            for (;;) {
                auto new_next = current_next * 1103515245 + 12345;
                if (s_next_random_value.compare_exchange_strong(current_next, new_next)) {
                    u.value = new_next;
                    break;
                }
            }
            offset = 0;
        }
        buffer[i] = u.bytes[offset++];
    }
}

bool get_good_random_bytes(u8* buffer, size_t buffer_size, bool allow_wait, bool fallback_to_fast)
{
    bool result = false;
    auto& kernel_rng = KernelRng::the();
    // FIXME: What if interrupts are disabled because we're in an interrupt?
    bool can_wait = are_interrupts_enabled();
    if (!can_wait && allow_wait) {
        // If we can't wait but the caller would be ok with it, then we
        // need to definitely fallback to *something*, even if it's less
        // secure...
        fallback_to_fast = true;
    }
    if (can_wait && allow_wait) {
        for (;;) {
            {
                MutexLocker locker(KernelRng::the().lock());
                if (kernel_rng.resource().get_random_bytes(buffer, buffer_size)) {
                    result = true;
                    break;
                }
            }
            kernel_rng.wait_for_entropy();
        }
    } else {
        // We can't wait/block here, or we are not allowed to block/wait
        if (kernel_rng.resource().get_random_bytes(buffer, buffer_size)) {
            result = true;
        } else if (fallback_to_fast) {
            // If interrupts are disabled
            do_get_fast_random_bytes(buffer, buffer_size);
            result = true;
        }
    }

    // NOTE: The only case where this function should ever return false and
    // not actually return random data is if fallback_to_fast == false and
    // allow_wait == false and interrupts are enabled!
    VERIFY(result || !fallback_to_fast);
    return result;
}

void get_fast_random_bytes(u8* buffer, size_t buffer_size)
{
    // Try to get good randomness, but don't block if we can't right now
    // and allow falling back to fast randomness
    auto result = get_good_random_bytes(buffer, buffer_size, false, true);
    VERIFY(result);
}

}