summaryrefslogtreecommitdiff
path: root/Kernel/Process.h
blob: c8152fd7b065043b1b7ced2915a456a5f01ff289 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
/*
 * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Concepts.h>
#include <AK/HashMap.h>
#include <AK/IntrusiveList.h>
#include <AK/IntrusiveListRelaxedConst.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/OwnPtr.h>
#include <AK/String.h>
#include <AK/Userspace.h>
#include <AK/WeakPtr.h>
#include <AK/Weakable.h>
#include <Kernel/API/Syscall.h>
#include <Kernel/AtomicEdgeAction.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/FileSystem/InodeMetadata.h>
#include <Kernel/FileSystem/UnveilNode.h>
#include <Kernel/Forward.h>
#include <Kernel/FutexQueue.h>
#include <Kernel/Locking/Mutex.h>
#include <Kernel/Locking/ProtectedValue.h>
#include <Kernel/Memory/AddressSpace.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/ProcessGroup.h>
#include <Kernel/StdLib.h>
#include <Kernel/Thread.h>
#include <Kernel/UnixTypes.h>
#include <LibC/elf.h>
#include <LibC/signal_numbers.h>

namespace Kernel {

ProtectedValue<String>& hostname();
Time kgettimeofday();

#define ENUMERATE_PLEDGE_PROMISES         \
    __ENUMERATE_PLEDGE_PROMISE(stdio)     \
    __ENUMERATE_PLEDGE_PROMISE(rpath)     \
    __ENUMERATE_PLEDGE_PROMISE(wpath)     \
    __ENUMERATE_PLEDGE_PROMISE(cpath)     \
    __ENUMERATE_PLEDGE_PROMISE(dpath)     \
    __ENUMERATE_PLEDGE_PROMISE(inet)      \
    __ENUMERATE_PLEDGE_PROMISE(id)        \
    __ENUMERATE_PLEDGE_PROMISE(proc)      \
    __ENUMERATE_PLEDGE_PROMISE(ptrace)    \
    __ENUMERATE_PLEDGE_PROMISE(exec)      \
    __ENUMERATE_PLEDGE_PROMISE(unix)      \
    __ENUMERATE_PLEDGE_PROMISE(recvfd)    \
    __ENUMERATE_PLEDGE_PROMISE(sendfd)    \
    __ENUMERATE_PLEDGE_PROMISE(fattr)     \
    __ENUMERATE_PLEDGE_PROMISE(tty)       \
    __ENUMERATE_PLEDGE_PROMISE(chown)     \
    __ENUMERATE_PLEDGE_PROMISE(chroot)    \
    __ENUMERATE_PLEDGE_PROMISE(thread)    \
    __ENUMERATE_PLEDGE_PROMISE(video)     \
    __ENUMERATE_PLEDGE_PROMISE(accept)    \
    __ENUMERATE_PLEDGE_PROMISE(settime)   \
    __ENUMERATE_PLEDGE_PROMISE(sigaction) \
    __ENUMERATE_PLEDGE_PROMISE(setkeymap) \
    __ENUMERATE_PLEDGE_PROMISE(prot_exec) \
    __ENUMERATE_PLEDGE_PROMISE(map_fixed) \
    __ENUMERATE_PLEDGE_PROMISE(getkeymap)

enum class Pledge : u32 {
#define __ENUMERATE_PLEDGE_PROMISE(x) x,
    ENUMERATE_PLEDGE_PROMISES
#undef __ENUMERATE_PLEDGE_PROMISE
};

enum class VeilState {
    None,
    Dropped,
    Locked,
};

typedef HashMap<FlatPtr, RefPtr<FutexQueue>> FutexQueues;

struct LoadResult;

class Process
    : public RefCounted<Process>
    , public Weakable<Process> {

private:
    class ProtectedValues {
    public:
        ProcessID pid { 0 };
        ProcessID ppid { 0 };
        SessionID sid { 0 };
        uid_t euid { 0 };
        gid_t egid { 0 };
        uid_t uid { 0 };
        gid_t gid { 0 };
        uid_t suid { 0 };
        gid_t sgid { 0 };
        Vector<gid_t> extra_gids;
        bool dumpable { false };
        Atomic<bool> has_promises { false };
        Atomic<u32> promises { 0 };
        Atomic<bool> has_execpromises { false };
        Atomic<u32> execpromises { 0 };
        mode_t umask { 022 };
        VirtualAddress signal_trampoline;
        Atomic<u32> thread_count { 0 };
        u8 termination_status { 0 };
        u8 termination_signal { 0 };
    };

public:
    AK_MAKE_NONCOPYABLE(Process);
    AK_MAKE_NONMOVABLE(Process);

    MAKE_ALIGNED_ALLOCATED(Process, PAGE_SIZE);

    friend class Thread;
    friend class CoreDump;
    friend class ProcFSProcessFileDescriptions;

    // Helper class to temporarily unprotect a process's protected data so you can write to it.
    class ProtectedDataMutationScope {
    public:
        explicit ProtectedDataMutationScope(Process& process)
            : m_process(process)
        {
            m_process.unprotect_data();
        }

        ~ProtectedDataMutationScope() { m_process.protect_data(); }

    private:
        Process& m_process;
    };

    enum class State : u8 {
        Running = 0,
        Dying,
        Dead
    };

public:
    inline static Process* current()
    {
        auto current_thread = Processor::current_thread();
        return current_thread ? &current_thread->process() : nullptr;
    }

    template<typename EntryFunction>
    static void kernel_process_trampoline(void* data)
    {
        EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
        (*func)();
        delete func;
    }

    enum class RegisterProcess {
        No,
        Yes
    };

    template<typename EntryFunction>
    static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes)
    {
        auto* entry_func = new EntryFunction(move(entry));
        return create_kernel_process(first_thread, move(name), &Process::kernel_process_trampoline<EntryFunction>, entry_func, affinity, do_register);
    }

    static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes);
    static RefPtr<Process> create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t, gid_t, ProcessID ppid, int& error, Vector<String>&& arguments = Vector<String>(), Vector<String>&& environment = Vector<String>(), TTY* = nullptr);
    static void register_new(Process&);
    ~Process();

    static NonnullRefPtrVector<Process> all_processes();

    RefPtr<Thread> create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, OwnPtr<KString> name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true);

    bool is_profiling() const { return m_profiling; }
    void set_profiling(bool profiling) { m_profiling = profiling; }
    bool should_core_dump() const { return m_should_dump_core; }
    void set_dump_core(bool dump_core) { m_should_dump_core = dump_core; }

    bool is_dying() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) != State::Running; }
    bool is_dead() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) == State::Dead; }

    bool is_stopped() const { return m_is_stopped; }
    bool set_stopped(bool stopped) { return m_is_stopped.exchange(stopped); }

    bool is_kernel_process() const { return m_is_kernel_process; }
    bool is_user_process() const { return !m_is_kernel_process; }

    static RefPtr<Process> from_pid(ProcessID);
    static SessionID get_sid_from_pgid(ProcessGroupID pgid);

    const String& name() const { return m_name; }
    ProcessID pid() const { return m_protected_values.pid; }
    SessionID sid() const { return m_protected_values.sid; }
    bool is_session_leader() const { return sid().value() == pid().value(); }
    ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; }
    bool is_group_leader() const { return pgid().value() == pid().value(); }
    const Vector<gid_t>& extra_gids() const { return m_protected_values.extra_gids; }
    uid_t euid() const { return m_protected_values.euid; }
    gid_t egid() const { return m_protected_values.egid; }
    uid_t uid() const { return m_protected_values.uid; }
    gid_t gid() const { return m_protected_values.gid; }
    uid_t suid() const { return m_protected_values.suid; }
    gid_t sgid() const { return m_protected_values.sgid; }
    ProcessID ppid() const { return m_protected_values.ppid; }

    bool is_dumpable() const { return m_protected_values.dumpable; }
    void set_dumpable(bool);

    mode_t umask() const { return m_protected_values.umask; }

    bool in_group(gid_t) const;

    // Breakable iteration functions
    template<IteratorFunction<Process&> Callback>
    static void for_each(Callback);
    template<IteratorFunction<Process&> Callback>
    static void for_each_in_pgrp(ProcessGroupID, Callback);
    template<IteratorFunction<Process&> Callback>
    void for_each_child(Callback);

    template<IteratorFunction<Thread&> Callback>
    IterationDecision for_each_thread(Callback);
    template<IteratorFunction<Thread&> Callback>
    IterationDecision for_each_thread(Callback callback) const;

    // Non-breakable iteration functions
    template<VoidFunction<Process&> Callback>
    static void for_each(Callback);
    template<VoidFunction<Process&> Callback>
    static void for_each_in_pgrp(ProcessGroupID, Callback);
    template<VoidFunction<Process&> Callback>
    void for_each_child(Callback);

    template<VoidFunction<Thread&> Callback>
    IterationDecision for_each_thread(Callback);
    template<VoidFunction<Thread&> Callback>
    IterationDecision for_each_thread(Callback callback) const;

    void die();
    void finalize();

    ThreadTracer* tracer() { return m_tracer.ptr(); }
    bool is_traced() const { return !!m_tracer; }
    KResult start_tracing_from(ProcessID tracer);
    void stop_tracing();
    void tracer_trap(Thread&, const RegisterState&);

    KResultOr<FlatPtr> sys$emuctl();
    KResultOr<FlatPtr> sys$yield();
    KResultOr<FlatPtr> sys$sync();
    KResultOr<FlatPtr> sys$beep();
    KResultOr<FlatPtr> sys$get_process_name(Userspace<char*> buffer, size_t buffer_size);
    KResultOr<FlatPtr> sys$set_process_name(Userspace<const char*> user_name, size_t user_name_length);
    KResultOr<FlatPtr> sys$create_inode_watcher(u32 flags);
    KResultOr<FlatPtr> sys$inode_watcher_add_watch(Userspace<const Syscall::SC_inode_watcher_add_watch_params*> user_params);
    KResultOr<FlatPtr> sys$inode_watcher_remove_watch(int fd, int wd);
    KResultOr<FlatPtr> sys$dbgputch(u8);
    KResultOr<FlatPtr> sys$dbgputstr(Userspace<const u8*>, size_t);
    KResultOr<FlatPtr> sys$dump_backtrace();
    KResultOr<FlatPtr> sys$gettid();
    KResultOr<FlatPtr> sys$setsid();
    KResultOr<FlatPtr> sys$getsid(pid_t);
    KResultOr<FlatPtr> sys$setpgid(pid_t pid, pid_t pgid);
    KResultOr<FlatPtr> sys$getpgrp();
    KResultOr<FlatPtr> sys$getpgid(pid_t);
    KResultOr<FlatPtr> sys$getuid();
    KResultOr<FlatPtr> sys$getgid();
    KResultOr<FlatPtr> sys$geteuid();
    KResultOr<FlatPtr> sys$getegid();
    KResultOr<FlatPtr> sys$getpid();
    KResultOr<FlatPtr> sys$getppid();
    KResultOr<FlatPtr> sys$getresuid(Userspace<uid_t*>, Userspace<uid_t*>, Userspace<uid_t*>);
    KResultOr<FlatPtr> sys$getresgid(Userspace<gid_t*>, Userspace<gid_t*>, Userspace<gid_t*>);
    KResultOr<FlatPtr> sys$umask(mode_t);
    KResultOr<FlatPtr> sys$open(Userspace<const Syscall::SC_open_params*>);
    KResultOr<FlatPtr> sys$close(int fd);
    KResultOr<FlatPtr> sys$read(int fd, Userspace<u8*>, size_t);
    KResultOr<FlatPtr> sys$readv(int fd, Userspace<const struct iovec*> iov, int iov_count);
    KResultOr<FlatPtr> sys$write(int fd, Userspace<const u8*>, size_t);
    KResultOr<FlatPtr> sys$writev(int fd, Userspace<const struct iovec*> iov, int iov_count);
    KResultOr<FlatPtr> sys$fstat(int fd, Userspace<stat*>);
    KResultOr<FlatPtr> sys$stat(Userspace<const Syscall::SC_stat_params*>);
    KResultOr<FlatPtr> sys$lseek(int fd, Userspace<off_t*>, int whence);
    KResultOr<FlatPtr> sys$ftruncate(int fd, Userspace<off_t*>);
    KResultOr<FlatPtr> sys$kill(pid_t pid_or_pgid, int sig);
    [[noreturn]] void sys$exit(int status);
    KResultOr<FlatPtr> sys$sigreturn(RegisterState& registers);
    KResultOr<FlatPtr> sys$waitid(Userspace<const Syscall::SC_waitid_params*>);
    KResultOr<FlatPtr> sys$mmap(Userspace<const Syscall::SC_mmap_params*>);
    KResultOr<FlatPtr> sys$mremap(Userspace<const Syscall::SC_mremap_params*>);
    KResultOr<FlatPtr> sys$munmap(Userspace<void*>, size_t);
    KResultOr<FlatPtr> sys$set_mmap_name(Userspace<const Syscall::SC_set_mmap_name_params*>);
    KResultOr<FlatPtr> sys$mprotect(Userspace<void*>, size_t, int prot);
    KResultOr<FlatPtr> sys$madvise(Userspace<void*>, size_t, int advice);
    KResultOr<FlatPtr> sys$msyscall(Userspace<void*>);
    KResultOr<FlatPtr> sys$purge(int mode);
    KResultOr<FlatPtr> sys$select(Userspace<const Syscall::SC_select_params*>);
    KResultOr<FlatPtr> sys$poll(Userspace<const Syscall::SC_poll_params*>);
    KResultOr<FlatPtr> sys$get_dir_entries(int fd, Userspace<void*>, size_t);
    KResultOr<FlatPtr> sys$getcwd(Userspace<char*>, size_t);
    KResultOr<FlatPtr> sys$chdir(Userspace<const char*>, size_t);
    KResultOr<FlatPtr> sys$fchdir(int fd);
    KResultOr<FlatPtr> sys$adjtime(Userspace<const timeval*>, Userspace<timeval*>);
    KResultOr<FlatPtr> sys$clock_gettime(clockid_t, Userspace<timespec*>);
    KResultOr<FlatPtr> sys$clock_settime(clockid_t, Userspace<const timespec*>);
    KResultOr<FlatPtr> sys$clock_nanosleep(Userspace<const Syscall::SC_clock_nanosleep_params*>);
    KResultOr<FlatPtr> sys$gethostname(Userspace<char*>, size_t);
    KResultOr<FlatPtr> sys$sethostname(Userspace<const char*>, size_t);
    KResultOr<FlatPtr> sys$uname(Userspace<utsname*>);
    KResultOr<FlatPtr> sys$readlink(Userspace<const Syscall::SC_readlink_params*>);
    KResultOr<FlatPtr> sys$ttyname(int fd, Userspace<char*>, size_t);
    KResultOr<FlatPtr> sys$ptsname(int fd, Userspace<char*>, size_t);
    KResultOr<FlatPtr> sys$fork(RegisterState&);
    KResultOr<FlatPtr> sys$execve(Userspace<const Syscall::SC_execve_params*>);
    KResultOr<FlatPtr> sys$dup2(int old_fd, int new_fd);
    KResultOr<FlatPtr> sys$sigaction(int signum, Userspace<const sigaction*> act, Userspace<sigaction*> old_act);
    KResultOr<FlatPtr> sys$sigprocmask(int how, Userspace<const sigset_t*> set, Userspace<sigset_t*> old_set);
    KResultOr<FlatPtr> sys$sigpending(Userspace<sigset_t*>);
    KResultOr<FlatPtr> sys$getgroups(size_t, Userspace<gid_t*>);
    KResultOr<FlatPtr> sys$setgroups(size_t, Userspace<const gid_t*>);
    KResultOr<FlatPtr> sys$pipe(int pipefd[2], int flags);
    KResultOr<FlatPtr> sys$killpg(pid_t pgrp, int sig);
    KResultOr<FlatPtr> sys$seteuid(uid_t);
    KResultOr<FlatPtr> sys$setegid(gid_t);
    KResultOr<FlatPtr> sys$setuid(uid_t);
    KResultOr<FlatPtr> sys$setgid(gid_t);
    KResultOr<FlatPtr> sys$setreuid(uid_t, uid_t);
    KResultOr<FlatPtr> sys$setresuid(uid_t, uid_t, uid_t);
    KResultOr<FlatPtr> sys$setresgid(gid_t, gid_t, gid_t);
    KResultOr<FlatPtr> sys$alarm(unsigned seconds);
    KResultOr<FlatPtr> sys$access(Userspace<const char*> pathname, size_t path_length, int mode);
    KResultOr<FlatPtr> sys$fcntl(int fd, int cmd, u32 extra_arg);
    KResultOr<FlatPtr> sys$ioctl(int fd, unsigned request, FlatPtr arg);
    KResultOr<FlatPtr> sys$mkdir(Userspace<const char*> pathname, size_t path_length, mode_t mode);
    KResultOr<FlatPtr> sys$times(Userspace<tms*>);
    KResultOr<FlatPtr> sys$utime(Userspace<const char*> pathname, size_t path_length, Userspace<const struct utimbuf*>);
    KResultOr<FlatPtr> sys$link(Userspace<const Syscall::SC_link_params*>);
    KResultOr<FlatPtr> sys$unlink(Userspace<const char*> pathname, size_t path_length);
    KResultOr<FlatPtr> sys$symlink(Userspace<const Syscall::SC_symlink_params*>);
    KResultOr<FlatPtr> sys$rmdir(Userspace<const char*> pathname, size_t path_length);
    KResultOr<FlatPtr> sys$mount(Userspace<const Syscall::SC_mount_params*>);
    KResultOr<FlatPtr> sys$umount(Userspace<const char*> mountpoint, size_t mountpoint_length);
    KResultOr<FlatPtr> sys$chmod(Userspace<const char*> pathname, size_t path_length, mode_t);
    KResultOr<FlatPtr> sys$fchmod(int fd, mode_t);
    KResultOr<FlatPtr> sys$chown(Userspace<const Syscall::SC_chown_params*>);
    KResultOr<FlatPtr> sys$fchown(int fd, uid_t, gid_t);
    KResultOr<FlatPtr> sys$socket(int domain, int type, int protocol);
    KResultOr<FlatPtr> sys$bind(int sockfd, Userspace<const sockaddr*> addr, socklen_t);
    KResultOr<FlatPtr> sys$listen(int sockfd, int backlog);
    KResultOr<FlatPtr> sys$accept4(Userspace<const Syscall::SC_accept4_params*>);
    KResultOr<FlatPtr> sys$connect(int sockfd, Userspace<const sockaddr*>, socklen_t);
    KResultOr<FlatPtr> sys$shutdown(int sockfd, int how);
    KResultOr<FlatPtr> sys$sendmsg(int sockfd, Userspace<const struct msghdr*>, int flags);
    KResultOr<FlatPtr> sys$recvmsg(int sockfd, Userspace<struct msghdr*>, int flags);
    KResultOr<FlatPtr> sys$getsockopt(Userspace<const Syscall::SC_getsockopt_params*>);
    KResultOr<FlatPtr> sys$setsockopt(Userspace<const Syscall::SC_setsockopt_params*>);
    KResultOr<FlatPtr> sys$getsockname(Userspace<const Syscall::SC_getsockname_params*>);
    KResultOr<FlatPtr> sys$getpeername(Userspace<const Syscall::SC_getpeername_params*>);
    KResultOr<FlatPtr> sys$socketpair(Userspace<const Syscall::SC_socketpair_params*>);
    KResultOr<FlatPtr> sys$sched_setparam(pid_t pid, Userspace<const struct sched_param*>);
    KResultOr<FlatPtr> sys$sched_getparam(pid_t pid, Userspace<struct sched_param*>);
    KResultOr<FlatPtr> sys$create_thread(void* (*)(void*), Userspace<const Syscall::SC_create_thread_params*>);
    [[noreturn]] void sys$exit_thread(Userspace<void*>, Userspace<void*>, size_t);
    KResultOr<FlatPtr> sys$join_thread(pid_t tid, Userspace<void**> exit_value);
    KResultOr<FlatPtr> sys$detach_thread(pid_t tid);
    KResultOr<FlatPtr> sys$set_thread_name(pid_t tid, Userspace<const char*> buffer, size_t buffer_size);
    KResultOr<FlatPtr> sys$get_thread_name(pid_t tid, Userspace<char*> buffer, size_t buffer_size);
    KResultOr<FlatPtr> sys$kill_thread(pid_t tid, int signal);
    KResultOr<FlatPtr> sys$rename(Userspace<const Syscall::SC_rename_params*>);
    KResultOr<FlatPtr> sys$mknod(Userspace<const Syscall::SC_mknod_params*>);
    KResultOr<FlatPtr> sys$halt();
    KResultOr<FlatPtr> sys$reboot();
    KResultOr<FlatPtr> sys$realpath(Userspace<const Syscall::SC_realpath_params*>);
    KResultOr<FlatPtr> sys$getrandom(Userspace<void*>, size_t, unsigned int);
    KResultOr<FlatPtr> sys$getkeymap(Userspace<const Syscall::SC_getkeymap_params*>);
    KResultOr<FlatPtr> sys$setkeymap(Userspace<const Syscall::SC_setkeymap_params*>);
    KResultOr<FlatPtr> sys$module_load(Userspace<const char*> path, size_t path_length);
    KResultOr<FlatPtr> sys$module_unload(Userspace<const char*> name, size_t name_length);
    KResultOr<FlatPtr> sys$profiling_enable(pid_t, u64);
    KResultOr<FlatPtr> sys$profiling_disable(pid_t);
    KResultOr<FlatPtr> sys$profiling_free_buffer(pid_t);
    KResultOr<FlatPtr> sys$futex(Userspace<const Syscall::SC_futex_params*>);
    KResultOr<FlatPtr> sys$chroot(Userspace<const char*> path, size_t path_length, int mount_flags);
    KResultOr<FlatPtr> sys$pledge(Userspace<const Syscall::SC_pledge_params*>);
    KResultOr<FlatPtr> sys$unveil(Userspace<const Syscall::SC_unveil_params*>);
    KResultOr<FlatPtr> sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2);
    KResultOr<FlatPtr> sys$perf_register_string(Userspace<char const*>, size_t);
    KResultOr<FlatPtr> sys$get_stack_bounds(Userspace<FlatPtr*> stack_base, Userspace<size_t*> stack_size);
    KResultOr<FlatPtr> sys$ptrace(Userspace<const Syscall::SC_ptrace_params*>);
    KResultOr<FlatPtr> sys$sendfd(int sockfd, int fd);
    KResultOr<FlatPtr> sys$recvfd(int sockfd, int options);
    KResultOr<FlatPtr> sys$sysconf(int name);
    KResultOr<FlatPtr> sys$disown(ProcessID);
    KResultOr<FlatPtr> sys$allocate_tls(Userspace<const char*> initial_data, size_t);
    KResultOr<FlatPtr> sys$prctl(int option, FlatPtr arg1, FlatPtr arg2);
    KResultOr<FlatPtr> sys$set_coredump_metadata(Userspace<const Syscall::SC_set_coredump_metadata_params*>);
    KResultOr<FlatPtr> sys$anon_create(size_t, int options);
    KResultOr<FlatPtr> sys$statvfs(Userspace<const Syscall::SC_statvfs_params*> user_params);
    KResultOr<FlatPtr> sys$fstatvfs(int fd, statvfs* buf);
    KResultOr<FlatPtr> sys$map_time_page();

    template<bool sockname, typename Params>
    int get_sock_or_peer_name(const Params&);

    static void initialize();

    [[noreturn]] void crash(int signal, FlatPtr ip, bool out_of_memory = false);
    [[nodiscard]] siginfo_t wait_info();

    const TTY* tty() const { return m_tty; }
    void set_tty(TTY*);

    u32 m_ticks_in_user { 0 };
    u32 m_ticks_in_kernel { 0 };

    u32 m_ticks_in_user_for_dead_children { 0 };
    u32 m_ticks_in_kernel_for_dead_children { 0 };

    Custody& current_directory();
    Custody* executable() { return m_executable.ptr(); }
    const Custody* executable() const { return m_executable.ptr(); }

    const Vector<String>& arguments() const { return m_arguments; };
    const Vector<String>& environment() const { return m_environment; };

    KResult exec(String path, Vector<String> arguments, Vector<String> environment, int recusion_depth = 0);

    KResultOr<LoadResult> load(NonnullRefPtr<FileDescription> main_program_description, RefPtr<FileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header);

    bool is_superuser() const { return euid() == 0; }

    void terminate_due_to_signal(u8 signal);
    KResult send_signal(u8 signal, Process* sender);

    u8 termination_signal() const { return m_protected_values.termination_signal; }

    u16 thread_count() const
    {
        return m_protected_values.thread_count.load(AK::MemoryOrder::memory_order_relaxed);
    }

    Mutex& big_lock() { return m_big_lock; }
    Mutex& ptrace_lock() { return m_ptrace_lock; }

    Custody& root_directory();
    Custody& root_directory_relative_to_global_root();
    void set_root_directory(const Custody&);

    bool has_promises() const { return m_protected_values.has_promises; }
    bool has_promised(Pledge pledge) const { return m_protected_values.promises & (1u << (u32)pledge); }

    VeilState veil_state() const
    {
        return m_veil_state;
    }
    const UnveilNode& unveiled_paths() const
    {
        return m_unveiled_paths;
    }

    bool wait_for_tracer_at_next_execve() const
    {
        return m_wait_for_tracer_at_next_execve;
    }
    void set_wait_for_tracer_at_next_execve(bool val)
    {
        m_wait_for_tracer_at_next_execve = val;
    }

    KResultOr<u32> peek_user_data(Userspace<const u32*> address);
    KResult poke_user_data(Userspace<u32*> address, u32 data);

    void disowned_by_waiter(Process& process);
    void unblock_waiters(Thread::WaitBlocker::UnblockFlags, u8 signal = 0);
    Thread::WaitBlockCondition& wait_block_condition() { return m_wait_block_condition; }

    template<typename Callback>
    void for_each_coredump_property(Callback callback) const
    {
        for (auto& property : m_coredump_properties) {
            if (property.key && property.value)
                callback(*property.key, *property.value);
        }
    }

    KResult set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value);
    KResult try_set_coredump_property(StringView key, StringView value);

    const NonnullRefPtrVector<Thread>& threads_for_coredump(Badge<CoreDump>) const { return m_threads_for_coredump; }

    PerformanceEventBuffer* perf_events() { return m_perf_event_buffer; }

    Memory::AddressSpace& address_space() { return *m_space; }
    Memory::AddressSpace const& address_space() const { return *m_space; }

    VirtualAddress signal_trampoline() const { return m_protected_values.signal_trampoline; }

private:
    friend class MemoryManager;
    friend class Scheduler;
    friend class Region;
    friend class PerformanceManager;

    bool add_thread(Thread&);
    bool remove_thread(Thread&);

    Process(const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty);
    static RefPtr<Process> create(RefPtr<Thread>& first_thread, const String& name, uid_t, gid_t, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd = nullptr, RefPtr<Custody> executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
    KResult attach_resources(NonnullOwnPtr<Memory::AddressSpace>&&, RefPtr<Thread>& first_thread, Process* fork_parent);
    static ProcessID allocate_pid();

    void kill_threads_except_self();
    void kill_all_threads();
    bool dump_core();
    bool dump_perfcore();
    bool create_perf_events_buffer_if_needed();
    void delete_perf_events_buffer();

    KResult do_exec(NonnullRefPtr<FileDescription> main_program_description, Vector<String> arguments, Vector<String> environment, RefPtr<FileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header);
    KResultOr<FlatPtr> do_write(FileDescription&, const UserOrKernelBuffer&, size_t);

    KResultOr<FlatPtr> do_statvfs(String path, statvfs* buf);

    KResultOr<RefPtr<FileDescription>> find_elf_interpreter_for_executable(const String& path, const ElfW(Ehdr) & elf_header, int nread, size_t file_size);

    KResult do_kill(Process&, int signal);
    KResult do_killpg(ProcessGroupID pgrp, int signal);
    KResult do_killall(int signal);
    KResult do_killself(int signal);

    KResultOr<siginfo_t> do_waitid(idtype_t idtype, int id, int options);

    KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(const char* user_path, size_t path_length) const;
    KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(Userspace<const char*> user_path, size_t path_length) const
    {
        return get_syscall_path_argument(user_path.unsafe_userspace_ptr(), path_length);
    }
    KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(const Syscall::StringArgument&) const;

    bool has_tracee_thread(ProcessID tracer_pid);

    void clear_futex_queues_on_exec();

    void setup_socket_fd(int fd, NonnullRefPtr<FileDescription> description, int type);

    inline PerformanceEventBuffer* current_perf_events_buffer()
    {
        if (g_profiling_all_threads)
            return g_global_perf_events;
        else if (m_profiling)
            return m_perf_event_buffer.ptr();
        else
            return nullptr;
    }

    mutable IntrusiveListNode<Process> m_list_node;

    String m_name;

    OwnPtr<Memory::AddressSpace> m_space;

    RefPtr<ProcessGroup> m_pg;

    AtomicEdgeAction<u32> m_protected_data_refs;
    void protect_data();
    void unprotect_data();

    OwnPtr<ThreadTracer> m_tracer;

public:
    class FileDescriptionAndFlags {
    public:
        bool is_valid() const { return !m_description.is_null(); }
        bool is_allocated() const { return m_is_allocated; }
        void allocate()
        {
            VERIFY(!m_is_allocated);
            VERIFY(!is_valid());
            m_is_allocated = true;
        }
        void deallocate()
        {
            VERIFY(m_is_allocated);
            VERIFY(!is_valid());
            m_is_allocated = false;
        }

        FileDescription* description() { return m_description; }
        const FileDescription* description() const { return m_description; }
        InodeIndex global_procfs_inode_index() const { return m_global_procfs_inode_index; }
        u32 flags() const { return m_flags; }
        void set_flags(u32 flags) { m_flags = flags; }

        void clear();
        void set(NonnullRefPtr<FileDescription>&&, u32 flags = 0);
        void refresh_inode_index();

    private:
        RefPtr<FileDescription> m_description;
        bool m_is_allocated { false };
        u32 m_flags { 0 };

        // Note: This is needed so when we generate inodes for ProcFS, we know that
        // we assigned a global Inode index to it so we can use it later
        InodeIndex m_global_procfs_inode_index;
    };

    class ScopedDescriptionAllocation;
    class FileDescriptions {
        friend class Process;

    public:
        ALWAYS_INLINE const FileDescriptionAndFlags& operator[](size_t i) const { return at(i); }
        ALWAYS_INLINE FileDescriptionAndFlags& operator[](size_t i) { return at(i); }

        FileDescriptions& operator=(const Kernel::Process::FileDescriptions& other)
        {
            ScopedSpinLock lock(m_fds_lock);
            ScopedSpinLock lock_other(other.m_fds_lock);
            m_fds_metadatas = other.m_fds_metadatas;
            for (auto& file_description_metadata : m_fds_metadatas) {
                file_description_metadata.refresh_inode_index();
            }
            return *this;
        }

        const FileDescriptionAndFlags& at(size_t i) const;
        FileDescriptionAndFlags& at(size_t i);

        void enumerate(Function<void(const FileDescriptionAndFlags&)>) const;
        void change_each(Function<void(FileDescriptionAndFlags&)>);

        KResultOr<ScopedDescriptionAllocation> allocate(int first_candidate_fd = 0);
        size_t open_count() const;

        bool try_resize(size_t size) { return m_fds_metadatas.try_resize(size); }

        size_t max_open() const
        {
            return m_max_open_file_descriptors;
        }

        void clear()
        {
            ScopedSpinLock lock(m_fds_lock);
            m_fds_metadatas.clear();
        }

        // FIXME: Consider to remove this somehow
        RefPtr<FileDescription> file_description(int fd) const;

    private:
        FileDescriptions() = default;
        static constexpr size_t m_max_open_file_descriptors { FD_SETSIZE };
        mutable SpinLock<u8> m_fds_lock;
        Vector<FileDescriptionAndFlags> m_fds_metadatas;
    };

    class ScopedDescriptionAllocation {
        AK_MAKE_NONCOPYABLE(ScopedDescriptionAllocation);

    public:
        ScopedDescriptionAllocation() = default;
        ScopedDescriptionAllocation(int tracked_fd, FileDescriptionAndFlags* description)
            : fd(tracked_fd)
            , m_description(description)
        {
        }

        ScopedDescriptionAllocation(ScopedDescriptionAllocation&& other)
            : fd(other.fd)
        {
            // Take over the responsibility of tracking to deallocation.
            swap(m_description, other.m_description);
        }

        ~ScopedDescriptionAllocation()
        {
            if (m_description && m_description->is_allocated() && !m_description->is_valid()) {
                m_description->deallocate();
            }
        }

        const int fd { -1 };

    private:
        FileDescriptionAndFlags* m_description { nullptr };
    };

    FileDescriptions& fds() { return m_fds; }
    const FileDescriptions& fds() const { return m_fds; }

private:
    SpinLockProtectedValue<Thread::ListInProcess>& thread_list() { return m_thread_list; }
    SpinLockProtectedValue<Thread::ListInProcess> const& thread_list() const { return m_thread_list; }

    SpinLockProtectedValue<Thread::ListInProcess> m_thread_list;

    FileDescriptions m_fds;

    const bool m_is_kernel_process;
    Atomic<State> m_state { State::Running };
    bool m_profiling { false };
    Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_is_stopped { false };
    bool m_should_dump_core { false };

    RefPtr<Custody> m_executable;
    RefPtr<Custody> m_cwd;
    RefPtr<Custody> m_root_directory;
    RefPtr<Custody> m_root_directory_relative_to_global_root;

    Vector<String> m_arguments;
    Vector<String> m_environment;

    RefPtr<TTY> m_tty;

    WeakPtr<Memory::Region> m_master_tls_region;
    size_t m_master_tls_size { 0 };
    size_t m_master_tls_alignment { 0 };

    Mutex m_big_lock { "Process" };
    Mutex m_ptrace_lock { "ptrace" };

    RefPtr<Timer> m_alarm_timer;

    VeilState m_veil_state { VeilState::None };
    UnveilNode m_unveiled_paths { "/", { .full_path = "/" } };

    OwnPtr<PerformanceEventBuffer> m_perf_event_buffer;

    FutexQueues m_futex_queues;
    SpinLock<u8> m_futex_lock;

    // This member is used in the implementation of ptrace's PT_TRACEME flag.
    // If it is set to true, the process will stop at the next execve syscall
    // and wait for a tracer to attach.
    bool m_wait_for_tracer_at_next_execve { false };

    Thread::WaitBlockCondition m_wait_block_condition;

    struct CoredumpProperty {
        OwnPtr<KString> key;
        OwnPtr<KString> value;
    };

    Array<CoredumpProperty, 4> m_coredump_properties;

    NonnullRefPtrVector<Thread> m_threads_for_coredump;

    static_assert(sizeof(ProtectedValues) < (PAGE_SIZE));
    alignas(4096) ProtectedValues m_protected_values;
    u8 m_protected_values_padding[PAGE_SIZE - sizeof(ProtectedValues)];

public:
    using List = IntrusiveListRelaxedConst<Process, RawPtr<Process>, &Process::m_list_node>;
};

// Note: Process object should be 2 pages of 4096 bytes each.
// It's not expected that the Process object will expand further because the first
// page is used for all unprotected values (which should be plenty of space for them).
// The second page is being used exclusively for write-protected values.
static_assert(sizeof(Process) == (PAGE_SIZE * 2));

extern RecursiveSpinLock g_profiling_lock;

ProtectedValue<Process::List>& processes();

template<IteratorFunction<Process&> Callback>
inline void Process::for_each(Callback callback)
{
    VERIFY_INTERRUPTS_DISABLED();
    processes().with_shared([&](const auto& list) {
        for (auto it = list.begin(); it != list.end();) {
            auto& process = *it;
            ++it;
            if (callback(process) == IterationDecision::Break)
                break;
        }
    });
}

template<IteratorFunction<Process&> Callback>
inline void Process::for_each_child(Callback callback)
{
    ProcessID my_pid = pid();
    processes().with_shared([&](const auto& list) {
        for (auto it = list.begin(); it != list.end();) {
            auto& process = *it;
            ++it;
            if (process.ppid() == my_pid || process.has_tracee_thread(pid())) {
                if (callback(process) == IterationDecision::Break)
                    break;
            }
        }
    });
}

template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
    return thread_list().with([&](auto& thread_list) -> IterationDecision {
        for (auto& thread : thread_list) {
            IterationDecision decision = callback(thread);
            if (decision != IterationDecision::Continue)
                return decision;
        }
        return IterationDecision::Continue;
    });
}

template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
    return thread_list().with([&](auto& thread_list) -> IterationDecision {
        for (auto& thread : thread_list) {
            IterationDecision decision = callback(thread);
            if (decision != IterationDecision::Continue)
                return decision;
        }
        return IterationDecision::Continue;
    });
}

template<IteratorFunction<Process&> Callback>
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
{
    processes().with_shared([&](const auto& list) {
        for (auto it = list.begin(); it != list.end();) {
            auto& process = *it;
            ++it;
            if (!process.is_dead() && process.pgid() == pgid) {
                if (callback(process) == IterationDecision::Break)
                    break;
            }
        }
    });
}

template<VoidFunction<Process&> Callback>
inline void Process::for_each(Callback callback)
{
    return for_each([&](auto& item) {
        callback(item);
        return IterationDecision::Continue;
    });
}

template<VoidFunction<Process&> Callback>
inline void Process::for_each_child(Callback callback)
{
    return for_each_child([&](auto& item) {
        callback(item);
        return IterationDecision::Continue;
    });
}

template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
    thread_list().with([&](auto& thread_list) {
        for (auto& thread : thread_list)
            callback(thread);
    });
    return IterationDecision::Continue;
}

template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
    thread_list().with([&](auto& thread_list) {
        for (auto& thread : thread_list)
            callback(thread);
    });
    return IterationDecision::Continue;
}

template<VoidFunction<Process&> Callback>
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
{
    return for_each_in_pgrp(pgid, [&](auto& item) {
        callback(item);
        return IterationDecision::Continue;
    });
}

inline bool InodeMetadata::may_read(const Process& process) const
{
    return may_read(process.euid(), process.egid(), process.extra_gids());
}

inline bool InodeMetadata::may_write(const Process& process) const
{
    return may_write(process.euid(), process.egid(), process.extra_gids());
}

inline bool InodeMetadata::may_execute(const Process& process) const
{
    return may_execute(process.euid(), process.egid(), process.extra_gids());
}

inline ProcessID Thread::pid() const
{
    return m_process->pid();
}

#define REQUIRE_NO_PROMISES                        \
    do {                                           \
        if (Process::current()->has_promises()) {  \
            dbgln("Has made a promise");           \
            Process::current()->crash(SIGABRT, 0); \
            VERIFY_NOT_REACHED();                  \
        }                                          \
    } while (0)

#define REQUIRE_PROMISE(promise)                                     \
    do {                                                             \
        if (Process::current()->has_promises()                       \
            && !Process::current()->has_promised(Pledge::promise)) { \
            dbgln("Has not pledged {}", #promise);                   \
            (void)Process::current()->try_set_coredump_property(     \
                "pledge_violation"sv, #promise);                     \
            Process::current()->crash(SIGABRT, 0);                   \
            VERIFY_NOT_REACHED();                                    \
        }                                                            \
    } while (0)
}

#define VERIFY_PROCESS_BIG_LOCK_ACQUIRED(process) \
    VERIFY(process->big_lock().own_lock());

#define VERIFY_NO_PROCESS_BIG_LOCK(process) \
    VERIFY(!process->big_lock().own_lock());

inline static String copy_string_from_user(const Kernel::Syscall::StringArgument& string)
{
    return copy_string_from_user(string.characters, string.length);
}

inline static KResultOr<NonnullOwnPtr<KString>> try_copy_kstring_from_user(const Kernel::Syscall::StringArgument& string)
{
    return try_copy_kstring_from_user(string.characters, string.length);
}

template<>
struct AK::Formatter<Kernel::Process> : AK::Formatter<String> {
    void format(FormatBuilder& builder, const Kernel::Process& value)
    {
        return AK::Formatter<String>::format(builder, String::formatted("{}({})", value.name(), value.pid().value()));
    }
};