summaryrefslogtreecommitdiff
path: root/Kernel/Process.cpp
blob: 5cdce4c2178d21fed938a69cc22bd6e5815d07cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
/*
 * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Singleton.h>
#include <AK/StdLibExtras.h>
#include <AK/StringBuilder.h>
#include <AK/Time.h>
#include <AK/Types.h>
#include <Kernel/API/Syscall.h>
#include <Kernel/Arch/x86/InterruptDisabler.h>
#include <Kernel/Coredump.h>
#include <Kernel/Debug.h>
#include <Kernel/Devices/DeviceManagement.h>
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
#    include <Kernel/Devices/KCOVDevice.h>
#endif
#include <Kernel/Devices/NullDevice.h>
#include <Kernel/FileSystem/Custody.h>
#include <Kernel/FileSystem/OpenFileDescription.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/KBufferBuilder.h>
#include <Kernel/KSyms.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/PageDirectory.h>
#include <Kernel/Memory/SharedInodeVMObject.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <Kernel/ProcessExposed.h>
#include <Kernel/Sections.h>
#include <Kernel/StdLib.h>
#include <Kernel/TTY/TTY.h>
#include <Kernel/Thread.h>
#include <Kernel/ThreadTracer.h>
#include <LibC/errno_numbers.h>
#include <LibC/limits.h>

namespace Kernel {

static void create_signal_trampoline();

RecursiveSpinlock g_profiling_lock;
static Atomic<pid_t> next_pid;
static Singleton<SpinlockProtected<Process::List>> s_processes;
READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;

static Singleton<MutexProtected<String>> s_hostname;

MutexProtected<String>& hostname()
{
    return *s_hostname;
}

SpinlockProtected<Process::List>& processes()
{
    return *s_processes;
}

ProcessID Process::allocate_pid()
{
    // Overflow is UB, and negative PIDs wreck havoc.
    // TODO: Handle PID overflow
    // For example: Use an Atomic<u32>, mask the most significant bit,
    // retry if PID is already taken as a PID, taken as a TID,
    // takes as a PGID, taken as a SID, or zero.
    return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
}

UNMAP_AFTER_INIT void Process::initialize()
{
    next_pid.store(0, AK::MemoryOrder::memory_order_release);

    // Note: This is called before scheduling is initialized, and before APs are booted.
    //       So we can "safely" bypass the lock here.
    reinterpret_cast<String&>(hostname()) = "courage";

    create_signal_trampoline();
}

NonnullRefPtrVector<Process> Process::all_processes()
{
    NonnullRefPtrVector<Process> output;
    processes().with([&](const auto& list) {
        output.ensure_capacity(list.size_slow());
        for (const auto& process : list)
            output.append(NonnullRefPtr<Process>(process));
    });
    return output;
}

bool Process::in_group(GroupID gid) const
{
    return this->gid() == gid || extra_gids().contains_slow(gid);
}

void Process::kill_threads_except_self()
{
    InterruptDisabler disabler;

    if (thread_count() <= 1)
        return;

    auto current_thread = Thread::current();
    for_each_thread([&](Thread& thread) {
        if (&thread == current_thread)
            return;

        if (auto state = thread.state(); state == Thread::State::Dead
            || state == Thread::State::Dying)
            return;

        // We need to detach this thread in case it hasn't been joined
        thread.detach();
        thread.set_should_die();
    });

    u32 dropped_lock_count = 0;
    if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
        dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
}

void Process::kill_all_threads()
{
    for_each_thread([&](Thread& thread) {
        // We need to detach this thread in case it hasn't been joined
        thread.detach();
        thread.set_should_die();
    });
}

void Process::register_new(Process& process)
{
    // Note: this is essentially the same like process->ref()
    RefPtr<Process> new_process = process;
    processes().with([&](auto& list) {
        list.prepend(process);
    });
}

KResultOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, StringView path, UserID uid, GroupID gid, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, TTY* tty)
{
    auto parts = path.split_view('/');
    if (arguments.is_empty()) {
        auto last_part = TRY(KString::try_create(parts.last()));
        if (!arguments.try_append(move(last_part)))
            return ENOMEM;
    }

    auto path_string = TRY(KString::try_create(path));
    auto name = TRY(KString::try_create(parts.last()));
    auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));

    if (!process->m_fds.try_resize(process->m_fds.max_open())) {
        first_thread = nullptr;
        return ENOMEM;
    }
    auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : DeviceManagement::the().null_device();
    auto description = TRY(device_to_use_as_tty.open(O_RDWR));
    auto setup_description = [&process, &description](int fd) {
        process->m_fds.m_fds_metadatas[fd].allocate();
        process->m_fds[fd].set(*description);
    };
    setup_description(0);
    setup_description(1);
    setup_description(2);

    if (auto result = process->exec(move(path_string), move(arguments), move(environment)); result.is_error()) {
        dbgln("Failed to exec {}: {}", path, result);
        first_thread = nullptr;
        return result;
    }

    register_new(*process);

    // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
    process->ref();

    return process;
}

RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
{
    auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
    if (process_or_error.is_error())
        return {};
    auto process = process_or_error.release_value();

    first_thread->regs().set_ip((FlatPtr)entry);
#if ARCH(I386)
    first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
#else
    first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
#endif

    if (do_register == RegisterProcess::Yes)
        register_new(*process);

    SpinlockLocker lock(g_scheduler_lock);
    first_thread->set_affinity(affinity);
    first_thread->set_state(Thread::State::Runnable);
    return process;
}

void Process::protect_data()
{
    m_protected_data_refs.unref([&]() {
        MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
    });
}

void Process::unprotect_data()
{
    m_protected_data_refs.ref([&]() {
        MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
    });
}

KResultOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
{
    auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
    auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(move(name), uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty)));
    TRY(process->attach_resources(move(space), first_thread, fork_parent));
    return process;
}

Process::Process(NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
    : m_name(move(name))
    , m_is_kernel_process(is_kernel_process)
    , m_executable(move(executable))
    , m_cwd(move(cwd))
    , m_tty(tty)
    , m_wait_blocker_set(*this)
{
    // Ensure that we protect the process data when exiting the constructor.
    ProtectedDataMutationScope scope { *this };

    m_protected_values.pid = allocate_pid();
    m_protected_values.ppid = ppid;
    m_protected_values.uid = uid;
    m_protected_values.gid = gid;
    m_protected_values.euid = uid;
    m_protected_values.egid = gid;
    m_protected_values.suid = uid;
    m_protected_values.sgid = gid;

    dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
}

KResult Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
{
    m_space = move(preallocated_space);

    auto create_first_thread = [&] {
        if (fork_parent) {
            // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
            return Thread::current()->try_clone(*this);
        }
        // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
        return Thread::try_create(*this);
    };

    first_thread = TRY(create_first_thread());

    if (!fork_parent) {
        // FIXME: Figure out if this is really necessary.
        first_thread->detach();
    }

    m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, *this));
    return KSuccess;
}

Process::~Process()
{
    unprotect_data();

    VERIFY(thread_count() == 0); // all threads should have been finalized
    VERIFY(!m_alarm_timer);

    PerformanceManager::add_process_exit_event(*this);
}

bool Process::unref() const
{
    // NOTE: We need to obtain the process list lock before doing anything,
    //       because otherwise someone might get in between us lowering the
    //       refcount and acquiring the lock.
    auto did_hit_zero = processes().with([&](auto& list) {
        auto new_ref_count = deref_base();
        if (new_ref_count > 0)
            return false;

        if (m_list_node.is_in_list())
            list.remove(*const_cast<Process*>(this));
        return true;
    });

    if (did_hit_zero)
        delete this;
    return did_hit_zero;
}

// Make sure the compiler doesn't "optimize away" this function:
extern void signal_trampoline_dummy() __attribute__((used));
void signal_trampoline_dummy()
{
#if ARCH(I386)
    // The trampoline preserves the current eax, pushes the signal code and
    // then calls the signal handler. We do this because, when interrupting a
    // blocking syscall, that syscall may return some special error code in eax;
    // This error code would likely be overwritten by the signal handler, so it's
    // necessary to preserve it here.
    asm(
        ".intel_syntax noprefix\n"
        ".globl asm_signal_trampoline\n"
        "asm_signal_trampoline:\n"
        "push ebp\n"
        "mov ebp, esp\n"
        "push eax\n"          // we have to store eax 'cause it might be the return value from a syscall
        "sub esp, 4\n"        // align the stack to 16 bytes
        "mov eax, [ebp+12]\n" // push the signal code
        "push eax\n"
        "call [ebp+8]\n" // call the signal handler
        "add esp, 8\n"
        "mov eax, %P0\n"
        "int 0x82\n" // sigreturn syscall
        ".globl asm_signal_trampoline_end\n"
        "asm_signal_trampoline_end:\n"
        ".att_syntax" ::"i"(Syscall::SC_sigreturn));
#elif ARCH(X86_64)
    // The trampoline preserves the current rax, pushes the signal code and
    // then calls the signal handler. We do this because, when interrupting a
    // blocking syscall, that syscall may return some special error code in eax;
    // This error code would likely be overwritten by the signal handler, so it's
    // necessary to preserve it here.
    asm(
        ".intel_syntax noprefix\n"
        ".globl asm_signal_trampoline\n"
        "asm_signal_trampoline:\n"
        "push rbp\n"
        "mov rbp, rsp\n"
        "push rax\n"          // we have to store rax 'cause it might be the return value from a syscall
        "sub rsp, 8\n"        // align the stack to 16 bytes
        "mov rdi, [rbp+24]\n" // push the signal code
        "call [rbp+16]\n"     // call the signal handler
        "add rsp, 8\n"
        "mov rax, %P0\n"
        "int 0x82\n" // sigreturn syscall
        ".globl asm_signal_trampoline_end\n"
        "asm_signal_trampoline_end:\n"
        ".att_syntax" ::"i"(Syscall::SC_sigreturn));
#endif
}

extern "C" char const asm_signal_trampoline[];
extern "C" char const asm_signal_trampoline_end[];

void create_signal_trampoline()
{
    // NOTE: We leak this region.
    g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
    g_signal_trampoline_region->set_syscall_region(true);

    size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;

    u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
    memcpy(code_ptr, asm_signal_trampoline, trampoline_size);

    g_signal_trampoline_region->set_writable(false);
    g_signal_trampoline_region->remap();
}

void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
{
    VERIFY(!is_dead());
    VERIFY(&Process::current() == this);

    if (out_of_memory) {
        dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
    } else {
        if (ip >= kernel_load_base && g_kernel_symbols_available) {
            auto* symbol = symbolicate_kernel_address(ip);
            dbgln("\033[31;1m{:p}  {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
        } else {
            dbgln("\033[31;1m{:p}  (?)\033[0m\n", ip);
        }
        dump_backtrace();
    }
    {
        ProtectedDataMutationScope scope { *this };
        m_protected_values.termination_signal = signal;
    }
    set_should_generate_coredump(!out_of_memory);
    address_space().dump_regions();
    VERIFY(is_user_process());
    die();
    // We can not return from here, as there is nowhere
    // to unwind to, so die right away.
    Thread::current()->die_if_needed();
    VERIFY_NOT_REACHED();
}

RefPtr<Process> Process::from_pid(ProcessID pid)
{
    return processes().with([&](const auto& list) -> RefPtr<Process> {
        for (auto& process : list) {
            if (process.pid() == pid)
                return &process;
        }
        return {};
    });
}

const Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i) const
{
    SpinlockLocker lock(m_fds_lock);
    if (m_fds_metadatas.size() <= i)
        return nullptr;

    if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
        return &metadata;

    return nullptr;
}
Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i)
{
    SpinlockLocker lock(m_fds_lock);
    if (m_fds_metadatas.size() <= i)
        return nullptr;

    if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
        return &metadata;

    return nullptr;
}

const Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i) const
{
    SpinlockLocker lock(m_fds_lock);
    VERIFY(m_fds_metadatas[i].is_allocated());
    return m_fds_metadatas[i];
}
Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i)
{
    SpinlockLocker lock(m_fds_lock);
    VERIFY(m_fds_metadatas[i].is_allocated());
    return m_fds_metadatas[i];
}

KResultOr<NonnullRefPtr<OpenFileDescription>> Process::OpenFileDescriptions::open_file_description(int fd) const
{
    SpinlockLocker lock(m_fds_lock);
    if (fd < 0)
        return EBADF;
    if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
        return EBADF;
    RefPtr description = m_fds_metadatas[fd].description();
    if (!description)
        return EBADF;
    return description.release_nonnull();
}

void Process::OpenFileDescriptions::enumerate(Function<void(const OpenFileDescriptionAndFlags&)> callback) const
{
    SpinlockLocker lock(m_fds_lock);
    for (auto& file_description_metadata : m_fds_metadatas) {
        callback(file_description_metadata);
    }
}

void Process::OpenFileDescriptions::change_each(Function<void(OpenFileDescriptionAndFlags&)> callback)
{
    SpinlockLocker lock(m_fds_lock);
    for (auto& file_description_metadata : m_fds_metadatas) {
        callback(file_description_metadata);
    }
}

size_t Process::OpenFileDescriptions::open_count() const
{
    size_t count = 0;
    enumerate([&](auto& file_description_metadata) {
        if (file_description_metadata.is_valid())
            ++count;
    });
    return count;
}

KResultOr<Process::ScopedDescriptionAllocation> Process::OpenFileDescriptions::allocate(int first_candidate_fd)
{
    SpinlockLocker lock(m_fds_lock);
    for (size_t i = first_candidate_fd; i < max_open(); ++i) {
        if (!m_fds_metadatas[i].is_allocated()) {
            m_fds_metadatas[i].allocate();
            return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
        }
    }
    return EMFILE;
}

Time kgettimeofday()
{
    return TimeManagement::now();
}

siginfo_t Process::wait_info()
{
    siginfo_t siginfo {};
    siginfo.si_signo = SIGCHLD;
    siginfo.si_pid = pid().value();
    siginfo.si_uid = uid().value();

    if (m_protected_values.termination_signal) {
        siginfo.si_status = m_protected_values.termination_signal;
        siginfo.si_code = CLD_KILLED;
    } else {
        siginfo.si_status = m_protected_values.termination_status;
        siginfo.si_code = CLD_EXITED;
    }
    return siginfo;
}

Custody& Process::current_directory()
{
    if (!m_cwd)
        m_cwd = VirtualFileSystem::the().root_custody();
    return *m_cwd;
}

KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length) const
{
    if (path_length == 0)
        return EINVAL;
    if (path_length > PATH_MAX)
        return ENAMETOOLONG;
    return try_copy_kstring_from_user(user_path, path_length);
}

KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
{
    Userspace<char const*> path_characters((FlatPtr)path.characters);
    return get_syscall_path_argument(path_characters, path.length);
}

bool Process::dump_core()
{
    VERIFY(is_dumpable());
    VERIFY(should_generate_coredump());
    dbgln("Generating coredump for pid: {}", pid().value());
    auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds());
    auto coredump_or_error = Coredump::try_create(*this, coredump_path);
    if (coredump_or_error.is_error())
        return false;
    return !coredump_or_error.value()->write().is_error();
}

bool Process::dump_perfcore()
{
    VERIFY(is_dumpable());
    VERIFY(m_perf_event_buffer);
    dbgln("Generating perfcore for pid: {}", pid().value());

    // Try to generate a filename which isn't already used.
    auto base_filename = String::formatted("{}_{}", name(), pid().value());
    auto description_or_error = VirtualFileSystem::the().open(String::formatted("{}.profile", base_filename), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
    for (size_t attempt = 1; attempt < 10 && description_or_error.is_error(); ++attempt)
        description_or_error = VirtualFileSystem::the().open(String::formatted("{}.{}.profile", base_filename, attempt), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
    if (description_or_error.is_error()) {
        dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
        return false;
    }

    auto& description = *description_or_error.value();
    auto builder_or_error = KBufferBuilder::try_create();
    if (builder_or_error.is_error()) {
        dbgln("Failed to generate perfcore for pid {}: Could not allocate KBufferBuilder.", pid());
        return false;
    }
    auto builder = builder_or_error.release_value();
    if (m_perf_event_buffer->to_json(builder).is_error()) {
        dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
        return false;
    }

    auto json = builder.build();
    if (!json) {
        dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
        return false;
    }
    auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
    if (description.write(json_buffer, json->size()).is_error()) {
        return false;
        dbgln("Failed to generate perfcore for pid {}: Could not write to perfcore file.", pid().value());
    }

    dbgln("Wrote perfcore for pid {} to {}", pid().value(), description.absolute_path());
    return true;
}

void Process::finalize()
{
    VERIFY(Thread::current() == g_finalizer);

    dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);

    if (is_dumpable()) {
        if (m_should_generate_coredump)
            dump_core();
        if (m_perf_event_buffer) {
            dump_perfcore();
            TimeManagement::the().disable_profile_timer();
        }
    }

    m_threads_for_coredump.clear();

    if (m_alarm_timer)
        TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
    m_fds.clear();
    m_tty = nullptr;
    m_executable = nullptr;
    m_cwd = nullptr;
    m_arguments.clear();
    m_environment.clear();

    m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);

    {
        // FIXME: PID/TID BUG
        if (auto parent_thread = Thread::from_tid(ppid().value())) {
            if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
                parent_thread->send_signal(SIGCHLD, this);
        }
    }

    if (!!ppid()) {
        if (auto parent = Process::from_pid(ppid())) {
            parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
            parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
        }
    }

    unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);

    m_space->remove_all_regions({});

    VERIFY(ref_count() > 0);
    // WaitBlockerSet::finalize will be in charge of dropping the last
    // reference if there are still waiters around, or whenever the last
    // waitable states are consumed. Unless there is no parent around
    // anymore, in which case we'll just drop it right away.
    m_wait_blocker_set.finalize();
}

void Process::disowned_by_waiter(Process& process)
{
    m_wait_blocker_set.disowned_by_waiter(process);
}

void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
{
    RefPtr<Process> waiter_process;
    if (auto* my_tracer = tracer())
        waiter_process = Process::from_pid(my_tracer->tracer_pid());
    else
        waiter_process = Process::from_pid(ppid());

    if (waiter_process)
        waiter_process->m_wait_blocker_set.unblock(*this, flags, signal);
}

void Process::die()
{
    auto expected = State::Running;
    if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
        // It's possible that another thread calls this at almost the same time
        // as we can't always instantly kill other threads (they may be blocked)
        // So if we already were called then other threads should stop running
        // momentarily and we only really need to service the first thread
        return;
    }

    // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
    // getting an EOF when the last process using the slave PTY dies.
    // If the master PTY owner relies on an EOF to know when to wait() on a
    // slave owner, we have to allow the PTY pair to be torn down.
    m_tty = nullptr;

    VERIFY(m_threads_for_coredump.is_empty());
    for_each_thread([&](auto& thread) {
        m_threads_for_coredump.append(thread);
    });

    processes().with([&](const auto& list) {
        for (auto it = list.begin(); it != list.end();) {
            auto& process = *it;
            ++it;
            if (process.has_tracee_thread(pid())) {
                dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
                process.stop_tracing();
                auto err = process.send_signal(SIGSTOP, this);
                if (err.is_error())
                    dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
            }
        }
    });

    kill_all_threads();
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
    KCOVDevice::free_process();
#endif
}

void Process::terminate_due_to_signal(u8 signal)
{
    VERIFY_INTERRUPTS_DISABLED();
    VERIFY(signal < 32);
    VERIFY(&Process::current() == this);
    dbgln("Terminating {} due to signal {}", *this, signal);
    {
        ProtectedDataMutationScope scope { *this };
        m_protected_values.termination_status = 0;
        m_protected_values.termination_signal = signal;
    }
    die();
}

KResult Process::send_signal(u8 signal, Process* sender)
{
    // Try to send it to the "obvious" main thread:
    auto receiver_thread = Thread::from_tid(pid().value());
    // If the main thread has died, there may still be other threads:
    if (!receiver_thread) {
        // The first one should be good enough.
        // Neither kill(2) nor kill(3) specify any selection precedure.
        for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
            receiver_thread = &thread;
            return IterationDecision::Break;
        });
    }
    if (receiver_thread) {
        receiver_thread->send_signal(signal, sender);
        return KSuccess;
    }
    return ESRCH;
}

RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
{
    VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));

    // FIXME: Do something with guard pages?

    auto thread_or_error = Thread::try_create(*this);
    if (thread_or_error.is_error())
        return {};

    auto thread = thread_or_error.release_value();
    thread->set_name(move(name));
    thread->set_affinity(affinity);
    thread->set_priority(priority);
    if (!joinable)
        thread->detach();

    auto& regs = thread->regs();
    regs.set_ip((FlatPtr)entry);
    regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register

    SpinlockLocker lock(g_scheduler_lock);
    thread->set_state(Thread::State::Runnable);
    return thread;
}

void Process::OpenFileDescriptionAndFlags::clear()
{
    // FIXME: Verify Process::m_fds_lock is locked!
    m_description = nullptr;
    m_flags = 0;
}

void Process::OpenFileDescriptionAndFlags::set(NonnullRefPtr<OpenFileDescription>&& description, u32 flags)
{
    // FIXME: Verify Process::m_fds_lock is locked!
    m_description = move(description);
    m_flags = flags;
}

void Process::set_tty(TTY* tty)
{
    m_tty = tty;
}

KResult Process::start_tracing_from(ProcessID tracer)
{
    m_tracer = TRY(ThreadTracer::try_create(tracer));
    return KSuccess;
}

void Process::stop_tracing()
{
    m_tracer = nullptr;
}

void Process::tracer_trap(Thread& thread, const RegisterState& regs)
{
    VERIFY(m_tracer.ptr());
    m_tracer->set_regs(regs);
    thread.send_urgent_signal_to_self(SIGTRAP);
}

bool Process::create_perf_events_buffer_if_needed()
{
    if (!m_perf_event_buffer) {
        m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
        m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
    }
    return !!m_perf_event_buffer;
}

void Process::delete_perf_events_buffer()
{
    if (m_perf_event_buffer)
        m_perf_event_buffer = nullptr;
}

bool Process::remove_thread(Thread& thread)
{
    ProtectedDataMutationScope scope { *this };
    auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
    VERIFY(thread_cnt_before != 0);
    thread_list().with([&](auto& thread_list) {
        thread_list.remove(thread);
    });
    return thread_cnt_before == 1;
}

bool Process::add_thread(Thread& thread)
{
    ProtectedDataMutationScope scope { *this };
    bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
    thread_list().with([&](auto& thread_list) {
        thread_list.append(thread);
    });
    return is_first;
}

void Process::set_dumpable(bool dumpable)
{
    if (dumpable == m_protected_values.dumpable)
        return;
    ProtectedDataMutationScope scope { *this };
    m_protected_values.dumpable = dumpable;
}

KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
{
    // Write it into the first available property slot.
    for (auto& slot : m_coredump_properties) {
        if (slot.key)
            continue;
        slot.key = move(key);
        slot.value = move(value);
        return KSuccess;
    }
    return ENOBUFS;
}

KResult Process::try_set_coredump_property(StringView key, StringView value)
{
    auto key_kstring = TRY(KString::try_create(key));
    auto value_kstring = TRY(KString::try_create(value));
    return set_coredump_property(move(key_kstring), move(value_kstring));
};

static constexpr StringView to_string(Pledge promise)
{
#define __ENUMERATE_PLEDGE_PROMISE(x) \
    case Pledge::x:                   \
        return #x;
    switch (promise) {
        ENUMERATE_PLEDGE_PROMISES
    }
#undef __ENUMERATE_PLEDGE_PROMISE
    VERIFY_NOT_REACHED();
}

void Process::require_no_promises()
{
    if (!has_promises())
        return;
    dbgln("Has made a promise");
    Process::current().crash(SIGABRT, 0);
    VERIFY_NOT_REACHED();
}

void Process::require_promise(Pledge promise)
{
    if (!has_promises())
        return;

    if (has_promised(promise))
        return;

    dbgln("Has not pledged {}", to_string(promise));
    (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
    crash(SIGABRT, 0);
}

}