summaryrefslogtreecommitdiff
path: root/Kernel/Net/NE2000NetworkAdapter.cpp
blob: c84c9f663924ef2c0086f82a2129b7ac70940a05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/*
 * Copyright (c) 2021, the SerenityOS developers
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <AK/MACAddress.h>
#include <Kernel/Debug.h>
#include <Kernel/IO.h>
#include <Kernel/Net/NE2000NetworkAdapter.h>

namespace Kernel {

/**
 * The NE2000 is an ancient 10 Mib/s Ethernet network card standard by Novell
 * from the late 80s. Based on National Semiconductor's DP8390 Ethernet chip
 * or compatible, they were known to be extremely bare-bones but also very
 * cheap entry-level cards.
 *
 * QEMU supports them with the ne2k_{isa,pci} devices, physical incarnations
 * were available from different manufacturers for the ISA bus and later on
 * the PCI bus, including:
 *  - Realtek's RTL8029
 *  - VIA Technologies, Inc.'s VT86C926
 *
 * Official documentation from National Semiconductor includes:
 *  - Datasheet "DP8390D/NS32490D NIC Network Interface Controller"
 *  - Application Note 874 "Writing Drivers for the DP8390 NIC Family of Ethernet Controllers"
 *
 * This driver supports only the PCI variant.
 *
 * Remember, friends don't let friends use NE2000 network cards :^)
 */

// Page 0 registers
static constexpr u8 REG_RW_COMMAND = 0x00;
static constexpr u8 BIT_COMMAND_STOP = (0b1 << 0);
static constexpr u8 BIT_COMMAND_START = (0b1 << 1);
static constexpr u8 BIT_COMMAND_TXP = (0b1 << 2);
static constexpr u8 BIT_COMMAND_DMA_READ = (0b001 << 3);
static constexpr u8 BIT_COMMAND_DMA_WRITE = (0b010 << 3);
static constexpr u8 BIT_COMMAND_DMA_SEND = (0b011 << 3);
static constexpr u8 BIT_COMMAND_DMA_ABORT = (0b100 << 3);
static constexpr u8 BIT_COMMAND_DMA_FIELD = (0b111 << 3);
static constexpr u8 BIT_COMMAND_PAGE1 = (0b01 << 6);
static constexpr u8 BIT_COMMAND_PAGE2 = (0b10 << 6);
static constexpr u8 BIT_COMMAND_PAGE_FIELD = (0b11 << 6);

static constexpr u8 REG_WR_PAGESTART = 0x01;
static constexpr u8 REG_WR_PAGESTOP = 0x02;
static constexpr u8 REG_RW_BOUNDARY = 0x03;
static constexpr u8 REG_RD_TRANSMITSTATUS = 0x04;
static constexpr u8 REG_WR_TRANSMITPAGE = 0x04;
static constexpr u8 REG_RD_NCR = 0x05;
static constexpr u8 REG_WR_TRANSMITBYTECOUNT0 = 0x05;
static constexpr u8 REG_WR_TRANSMITBYTECOUNT1 = 0x06;
static constexpr u8 REG_RW_INTERRUPTSTATUS = 0x07;
static constexpr u8 REG_RD_CRDMA0 = 0x08;
static constexpr u8 REG_WR_REMOTESTARTADDRESS0 = 0x08;
static constexpr u8 REG_RD_CRDMA1 = 0x09;
static constexpr u8 REG_WR_REMOTESTARTADDRESS1 = 0x09;
static constexpr u8 REG_WR_REMOTEBYTECOUNT0 = 0x0a;
static constexpr u8 REG_WR_REMOTEBYTECOUNT1 = 0x0b;

static constexpr u8 REG_RD_RECEIVESTATUS = 0x0c;
static constexpr u8 BIT_RECEIVESTATUS_PRX = (0b1 << 0);
static constexpr u8 BIT_RECEIVESTATUS_CRC = (0b1 << 1);
static constexpr u8 BIT_RECEIVESTATUS_FAE = (0b1 << 2);
static constexpr u8 BIT_RECEIVESTATUS_FO = (0b1 << 3);
static constexpr u8 BIT_RECEIVESTATUS_MPA = (0b1 << 4);

static constexpr u8 REG_WR_RECEIVECONFIGURATION = 0x0c;
static constexpr u8 BIT_RECEIVECONFIGURATION_SEP = (0b1 << 0);
static constexpr u8 BIT_RECEIVECONFIGURATION_AR = (0b1 << 1);
static constexpr u8 BIT_RECEIVECONFIGURATION_AB = (0b1 << 2);
static constexpr u8 BIT_RECEIVECONFIGURATION_AM = (0b1 << 3);
static constexpr u8 BIT_RECEIVECONFIGURATION_PRO = (0b1 << 4);
static constexpr u8 BIT_RECEIVECONFIGURATION_MON = (0b1 << 5);

static constexpr u8 REG_RD_FAE_TALLY = 0x0d;

static constexpr u8 REG_WR_TRANSMITCONFIGURATION = 0x0d;
static constexpr u8 BIT_WR_TRANSMITCONFIGURATION_LOOPBACK = (0b10 << 0);

static constexpr u8 REG_RD_CRC_TALLY = 0x0e;

static constexpr u8 REG_WR_DATACONFIGURATION = 0x0e;
static constexpr u8 BIT_DATACONFIGURATION_WTS = (0b1 << 0);
static constexpr u8 BIT_DATACONFIGURATION_BOS = (0b1 << 1);
static constexpr u8 BIT_DATACONFIGURATION_LS = (0b1 << 2);
static constexpr u8 BIT_DATACONFIGURATION_FIFO_8B = (0b10 << 5);

static constexpr u8 REG_RD_MISS_PKT_TALLY = 0x0f;

static constexpr u8 REG_WR_INTERRUPTMASK = 0x0f;
static constexpr u8 BIT_INTERRUPTMASK_PRX = (0b1 << 0);
static constexpr u8 BIT_INTERRUPTMASK_PTX = (0b1 << 1);
static constexpr u8 BIT_INTERRUPTMASK_RXE = (0b1 << 2);
static constexpr u8 BIT_INTERRUPTMASK_TXE = (0b1 << 3);
static constexpr u8 BIT_INTERRUPTMASK_OVW = (0b1 << 4);
static constexpr u8 BIT_INTERRUPTMASK_CNT = (0b1 << 5);
static constexpr u8 BIT_INTERRUPTMASK_RDC = (0b1 << 6);
static constexpr u8 BIT_INTERRUPTMASK_RST = (0b1 << 7);

static constexpr u8 REG_RW_IOPORT = 0x10;

// Page 1 registers
static constexpr u8 REG_RW_PHYSICALADDRESS0 = 0x01;
static constexpr u8 REG_RW_CURRENT = 0x07;

static constexpr int NE2K_PAGE_SIZE = 256;

static constexpr int NE2K_RAM_BEGIN = 16384;
static constexpr int NE2K_RAM_END = 32768;
static constexpr int NE2K_RAM_SIZE = NE2K_RAM_END - NE2K_RAM_BEGIN;

static constexpr int NE2K_RAM_SEND_BEGIN = 16384;
static constexpr int NE2K_RAM_SEND_END = 16384 + 6 * 256;
static constexpr int NE2K_RAM_SEND_SIZE = NE2K_RAM_SEND_END - NE2K_RAM_SEND_BEGIN;

static constexpr int NE2K_RAM_RECV_BEGIN = NE2K_RAM_SEND_END;
static constexpr int NE2K_RAM_RECV_END = NE2K_RAM_END;
static constexpr int NE2K_RAM_RECV_SIZE = NE2K_RAM_RECV_END - NE2K_RAM_RECV_BEGIN;

static_assert(NE2K_RAM_BEGIN % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_END % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_SEND_BEGIN % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_SEND_END % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_RECV_BEGIN % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_RECV_END % NE2K_PAGE_SIZE == 0);

struct [[gnu::packed]] received_packet_header {
    u8 status;
    u8 next_packet_page;
    u16 length;
};

UNMAP_AFTER_INIT void NE2000NetworkAdapter::detect()
{
    static const auto ne2k_ids = Array<PCI::ID, 11> {
        PCI::ID { 0x10EC, 0x8029 }, // RealTek RTL-8029(AS)

        // List of clones, taken from Linux's ne2k-pci.c
        PCI::ID { 0x1050, 0x0940 }, // Winbond 89C940
        PCI::ID { 0x11f6, 0x1401 }, // Compex RL2000
        PCI::ID { 0x8e2e, 0x3000 }, // KTI ET32P2
        PCI::ID { 0x4a14, 0x5000 }, // NetVin NV5000SC
        PCI::ID { 0x1106, 0x0926 }, // Via 86C926
        PCI::ID { 0x10bd, 0x0e34 }, // SureCom NE34
        PCI::ID { 0x1050, 0x5a5a }, // Winbond W89C940F
        PCI::ID { 0x12c3, 0x0058 }, // Holtek HT80232
        PCI::ID { 0x12c3, 0x5598 }, // Holtek HT80229
        PCI::ID { 0x8c4a, 0x1980 }, // Winbond W89C940 (misprogrammed)
    };
    PCI::enumerate([&](const PCI::Address& address, PCI::ID id) {
        if (address.is_null())
            return;
        if (!ne2k_ids.span().contains_slow(id))
            return;
        u8 irq = PCI::get_interrupt_line(address);
        [[maybe_unused]] auto& unused = adopt(*new NE2000NetworkAdapter(address, irq)).leak_ref();
    });
}

UNMAP_AFTER_INIT NE2000NetworkAdapter::NE2000NetworkAdapter(PCI::Address address, u8 irq)
    : PCI::Device(address, irq)
    , m_io_base(PCI::get_BAR0(pci_address()) & ~3)
{
    set_interface_name("ne2k");

    dmesgln("NE2000: Found @ {}", pci_address());

    m_interrupt_line = PCI::get_interrupt_line(pci_address());
    dmesgln("NE2000: Port base: {}", m_io_base);
    dmesgln("NE2000: Interrupt line: {}", m_interrupt_line);

    int ram_errors = ram_test();
    dmesgln("NE2000: RAM test {}, got {} byte errors", (ram_errors == 0 ? "OK" : "KO"), ram_errors);

    reset();
    set_mac_address(m_mac_address);
    dmesgln("NE2000: MAC address: {}", m_mac_address.to_string().characters());
    enable_irq();
}

UNMAP_AFTER_INIT NE2000NetworkAdapter::~NE2000NetworkAdapter()
{
}

void NE2000NetworkAdapter::handle_irq(const RegisterState&)
{
    u8 status = in8(REG_RW_INTERRUPTSTATUS);
    dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Got interrupt, status={:#02x}", status);

    if (status & BIT_INTERRUPTMASK_PRX) {
        dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Interrupt for packet received");
    }
    if (status & BIT_INTERRUPTMASK_PTX) {
        dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Interrupt for packet sent");
    }
    if (status & BIT_INTERRUPTMASK_RXE) {
        u8 fae = in8(REG_RD_FAE_TALLY);
        u8 crc = in8(REG_RD_CRC_TALLY);
        u8 miss = in8(REG_RD_MISS_PKT_TALLY);
        dmesgln("NE2000NetworkAdapter: Packet reception error framing={} crc={} missed={}", fae, crc, miss);
        // TODO: handle counters
    }
    if (status & BIT_INTERRUPTMASK_TXE) {
        dmesgln("NE2000NetworkAdapter: Packet transmission error");
    }
    if (status & BIT_INTERRUPTMASK_OVW) {
        dmesgln("NE2000NetworkAdapter: Ring buffer reception overflow error");
        // TODO: handle counters
    }
    if (status & BIT_INTERRUPTMASK_CNT) {
        dmesgln("NE2000NetworkAdapter: Counter overflow error");
        // TODO: handle counters
    }
    if (status & BIT_INTERRUPTMASK_RST) {
        dmesgln("NE2000NetworkAdapter: NIC requires reset due to packet reception overflow");
        // TODO: proper reset procedure
        reset();
    }

    receive();
    m_wait_queue.wake_all();

    out8(REG_RW_INTERRUPTSTATUS, status);
}

int NE2000NetworkAdapter::ram_test()
{
    IOAddress io(PCI::get_BAR0(pci_address()) & ~3);
    int errors = 0;

    out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_STOP);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
    out8(REG_WR_DATACONFIGURATION, BIT_DATACONFIGURATION_FIFO_8B | BIT_DATACONFIGURATION_WTS);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
    out8(REG_WR_DATACONFIGURATION, BIT_DATACONFIGURATION_FIFO_8B | BIT_DATACONFIGURATION_BOS | BIT_DATACONFIGURATION_WTS);
#else
#    error Unknown byte order
#endif
    out8(REG_WR_REMOTEBYTECOUNT0, 0x00);
    out8(REG_WR_REMOTEBYTECOUNT1, 0x00);
    out8(REG_WR_RECEIVECONFIGURATION, BIT_RECEIVECONFIGURATION_MON);
    out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_START);
    auto buffer = ByteBuffer::create_uninitialized(NE2K_RAM_SIZE);

    const u8 patterns[3] = { 0x5a, 0xff, 0x00 };
    for (int i = 0; i < 3; ++i) {
        for (size_t j = 0; j < buffer.size(); ++j)
            buffer[j] = patterns[i];

        rdma_write(NE2K_RAM_BEGIN, buffer);
        rdma_read(NE2K_RAM_BEGIN, buffer);

        for (size_t j = 0; j < buffer.size(); ++j) {
            if (buffer[j] != patterns[i]) {
                if (errors < 16)
                    dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Bad adapter RAM @ {} expected={} got={}", PhysicalAddress(NE2K_RAM_BEGIN + j), patterns[i], buffer[j]);
                else if (errors == 16)
                    dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Too many RAM errors, silencing further output");
                errors++;
            }
        }
    }

    return errors;
}

void NE2000NetworkAdapter::reset()
{
    const u8 interrupt_mask = BIT_INTERRUPTMASK_PRX | BIT_INTERRUPTMASK_PTX | BIT_INTERRUPTMASK_RXE | BIT_INTERRUPTMASK_TXE | BIT_INTERRUPTMASK_OVW | BIT_INTERRUPTMASK_CNT;
    u8 prom[32];

    // Taken from DP8390D's datasheet section 11.0, "Initialization Procedures"
    out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_STOP);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
    out8(REG_WR_DATACONFIGURATION, BIT_DATACONFIGURATION_FIFO_8B | BIT_DATACONFIGURATION_WTS);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
    out8(REG_WR_DATACONFIGURATION, BIT_DATACONFIGURATION_FIFO_8B | BIT_DATACONFIGURATION_BOS | BIT_DATACONFIGURATION_WTS);
#else
#    error Unknown byte order
#endif
    out8(REG_WR_REMOTEBYTECOUNT0, 0x00);
    out8(REG_WR_REMOTEBYTECOUNT1, 0x00);
    out8(REG_WR_RECEIVECONFIGURATION, BIT_RECEIVECONFIGURATION_AB | BIT_RECEIVECONFIGURATION_AR);
    out8(REG_WR_TRANSMITCONFIGURATION, BIT_WR_TRANSMITCONFIGURATION_LOOPBACK);
    m_ring_read_ptr = NE2K_RAM_RECV_BEGIN >> 8;
    out8(REG_WR_PAGESTART, NE2K_RAM_RECV_BEGIN >> 8);
    out8(REG_RW_BOUNDARY, NE2K_RAM_RECV_BEGIN >> 8);
    out8(REG_WR_PAGESTOP, NE2K_RAM_RECV_END >> 8);
    out8(REG_RW_INTERRUPTSTATUS, 0xff);
    out8(REG_WR_INTERRUPTMASK, interrupt_mask);
    rdma_read(0, Bytes(prom, sizeof(prom)));
    for (int i = 0; i < 6; i++) {
        m_mac_address[i] = prom[i * 2];
    }

    out8(REG_RW_COMMAND, BIT_COMMAND_PAGE1 | BIT_COMMAND_DMA_ABORT | BIT_COMMAND_STOP);
    for (int i = 0; i < 6; i++) {
        out8(REG_RW_PHYSICALADDRESS0 + i, m_mac_address[i]);
    }
    out8(REG_RW_CURRENT, NE2K_RAM_RECV_BEGIN >> 8);

    out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_START);
    out8(REG_WR_TRANSMITCONFIGURATION, 0xe0);
}

void NE2000NetworkAdapter::rdma_read(size_t address, Bytes payload)
{
    dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: DMA read @ {} length={}", PhysicalAddress(address), payload.size());

    u8 command = in8(REG_RW_COMMAND) & ~(BIT_COMMAND_PAGE_FIELD | BIT_COMMAND_DMA_FIELD);
    out8(REG_RW_COMMAND, command | BIT_COMMAND_DMA_ABORT);
    out8(REG_RW_INTERRUPTSTATUS, BIT_INTERRUPTMASK_RDC);

    out8(REG_WR_REMOTEBYTECOUNT0, payload.size());
    out8(REG_WR_REMOTEBYTECOUNT1, payload.size() >> 8);
    out8(REG_WR_REMOTESTARTADDRESS0, address);
    out8(REG_WR_REMOTESTARTADDRESS1, address >> 8);

    command = in8(REG_RW_COMMAND) & ~(BIT_COMMAND_DMA_FIELD);
    out8(REG_RW_COMMAND, command | BIT_COMMAND_DMA_READ);

    for (size_t i = 0; i < payload.size(); i += 2) {
        u16 data = in16(REG_RW_IOPORT);
        payload[i] = data;
        if (i != payload.size() - 1)
            payload[i + 1] = data >> 8;
    }

    while (!(in8(REG_RW_INTERRUPTSTATUS) & BIT_INTERRUPTMASK_RDC))
        ;
}

void NE2000NetworkAdapter::rdma_write(size_t address, ReadonlyBytes payload)
{
    dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: DMA write @ {} length={}", PhysicalAddress(address), payload.size());

    u8 command = in8(REG_RW_COMMAND) & ~(BIT_COMMAND_PAGE_FIELD | BIT_COMMAND_DMA_FIELD);
    out8(REG_RW_COMMAND, command | BIT_COMMAND_DMA_ABORT);
    out8(REG_RW_INTERRUPTSTATUS, BIT_INTERRUPTMASK_RDC);

    out8(REG_WR_REMOTEBYTECOUNT0, payload.size());
    out8(REG_WR_REMOTEBYTECOUNT1, payload.size() >> 8);
    out8(REG_WR_REMOTESTARTADDRESS0, address);
    out8(REG_WR_REMOTESTARTADDRESS1, address >> 8);

    command = in8(REG_RW_COMMAND) & ~(BIT_COMMAND_DMA_FIELD);
    out8(REG_RW_COMMAND, command | BIT_COMMAND_DMA_WRITE);

    for (size_t i = 0; i < payload.size(); i += 2) {
        u16 data = payload[i];
        if (i != payload.size() - 1)
            data |= payload[i + 1] << 8;
        out16(REG_RW_IOPORT, data);
    }

    while (!(in8(REG_RW_INTERRUPTSTATUS) & BIT_INTERRUPTMASK_RDC))
        ;
}

void NE2000NetworkAdapter::send_raw(ReadonlyBytes payload)
{
    dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Sending packet length={}", payload.size());

    if (payload.size() > NE2K_RAM_SEND_SIZE) {
        dmesgln("NE2000NetworkAdapter: Packet to send was too big; discarding");
        return;
    }

    while (in8(REG_RW_COMMAND) & BIT_COMMAND_TXP)
        m_wait_queue.wait_forever("NE2000NetworkAdapter");

    disable_irq();
    size_t packet_size = payload.size();
    if (packet_size < 64)
        packet_size = 64;
    rdma_write(NE2K_RAM_SEND_BEGIN, payload);
    out8(REG_WR_TRANSMITPAGE, NE2K_RAM_SEND_BEGIN >> 8);
    out8(REG_WR_TRANSMITBYTECOUNT0, packet_size);
    out8(REG_WR_TRANSMITBYTECOUNT1, packet_size >> 8);
    out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_TXP | BIT_COMMAND_START);

    dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Packet submitted for transmission");

    enable_irq();
}

void NE2000NetworkAdapter::receive()
{
    while (true) {
        out8(REG_RW_COMMAND, BIT_COMMAND_PAGE1 | in8(REG_RW_COMMAND));
        u8 current = in8(REG_RW_CURRENT);
        out8(REG_RW_COMMAND, in8(REG_RW_COMMAND) & ~BIT_COMMAND_PAGE_FIELD);
        if (m_ring_read_ptr == current)
            break;

        size_t header_address = m_ring_read_ptr << 8;
        received_packet_header header;
        rdma_read(header_address, Bytes(reinterpret_cast<u8*>(&header), sizeof(header)));

        bool packet_ok = header.status & BIT_RECEIVESTATUS_PRX;
        dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Packet received {} length={}", (packet_ok ? "intact" : "damaged"), header.length);

        if (packet_ok) {
            auto packet = ByteBuffer::create_uninitialized(sizeof(received_packet_header) + header.length);
            int bytes_left = packet.size();
            int current_offset = 0;
            int ring_offset = header_address;

            while (bytes_left > 0) {
                int copy_size = min(bytes_left, NE2K_PAGE_SIZE);
                rdma_read(ring_offset, packet.span().slice(current_offset, copy_size));
                current_offset += copy_size;
                ring_offset += copy_size;
                bytes_left -= copy_size;
                if (ring_offset == NE2K_RAM_RECV_END)
                    ring_offset = NE2K_RAM_RECV_BEGIN;
            }

            did_receive(packet.span().slice(sizeof(received_packet_header)));
        }

        if (header.next_packet_page == NE2K_RAM_RECV_BEGIN)
            out8(REG_RW_BOUNDARY, (NE2K_RAM_RECV_END >> 8) - 1);
        else
            out8(REG_RW_BOUNDARY, header.next_packet_page - 1);
        m_ring_read_ptr = header.next_packet_page;
    }
}

void NE2000NetworkAdapter::out8(u16 address, u8 data)
{
    m_io_base.offset(address).out(data);
}

void NE2000NetworkAdapter::out16(u16 address, u16 data)
{
    m_io_base.offset(address).out(data);
}

u8 NE2000NetworkAdapter::in8(u16 address)
{
    u8 data = m_io_base.offset(address).in<u8>();
    return data;
}

u16 NE2000NetworkAdapter::in16(u16 address)
{
    return m_io_base.offset(address).in<u16>();
}

}