1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/MACAddress.h>
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Bus/PCI/IDs.h>
#include <Kernel/Debug.h>
#include <Kernel/Net/E1000NetworkAdapter.h>
#include <Kernel/Sections.h>
namespace Kernel {
#define REG_CTRL 0x0000
#define REG_STATUS 0x0008
#define REG_EEPROM 0x0014
#define REG_CTRL_EXT 0x0018
#define REG_INTERRUPT_CAUSE_READ 0x00C0
#define REG_INTERRUPT_RATE 0x00C4
#define REG_INTERRUPT_MASK_SET 0x00D0
#define REG_INTERRUPT_MASK_CLEAR 0x00D8
#define REG_RCTRL 0x0100
#define REG_RXDESCLO 0x2800
#define REG_RXDESCHI 0x2804
#define REG_RXDESCLEN 0x2808
#define REG_RXDESCHEAD 0x2810
#define REG_RXDESCTAIL 0x2818
#define REG_TCTRL 0x0400
#define REG_TXDESCLO 0x3800
#define REG_TXDESCHI 0x3804
#define REG_TXDESCLEN 0x3808
#define REG_TXDESCHEAD 0x3810
#define REG_TXDESCTAIL 0x3818
#define REG_RDTR 0x2820 // RX Delay Timer Register
#define REG_RXDCTL 0x3828 // RX Descriptor Control
#define REG_RADV 0x282C // RX Int. Absolute Delay Timer
#define REG_RSRPD 0x2C00 // RX Small Packet Detect Interrupt
#define REG_TIPG 0x0410 // Transmit Inter Packet Gap
#define ECTRL_SLU 0x40 //set link up
#define RCTL_EN (1 << 1) // Receiver Enable
#define RCTL_SBP (1 << 2) // Store Bad Packets
#define RCTL_UPE (1 << 3) // Unicast Promiscuous Enabled
#define RCTL_MPE (1 << 4) // Multicast Promiscuous Enabled
#define RCTL_LPE (1 << 5) // Long Packet Reception Enable
#define RCTL_LBM_NONE (0 << 6) // No Loopback
#define RCTL_LBM_PHY (3 << 6) // PHY or external SerDesc loopback
#define RTCL_RDMTS_HALF (0 << 8) // Free Buffer Threshold is 1/2 of RDLEN
#define RTCL_RDMTS_QUARTER (1 << 8) // Free Buffer Threshold is 1/4 of RDLEN
#define RTCL_RDMTS_EIGHTH (2 << 8) // Free Buffer Threshold is 1/8 of RDLEN
#define RCTL_MO_36 (0 << 12) // Multicast Offset - bits 47:36
#define RCTL_MO_35 (1 << 12) // Multicast Offset - bits 46:35
#define RCTL_MO_34 (2 << 12) // Multicast Offset - bits 45:34
#define RCTL_MO_32 (3 << 12) // Multicast Offset - bits 43:32
#define RCTL_BAM (1 << 15) // Broadcast Accept Mode
#define RCTL_VFE (1 << 18) // VLAN Filter Enable
#define RCTL_CFIEN (1 << 19) // Canonical Form Indicator Enable
#define RCTL_CFI (1 << 20) // Canonical Form Indicator Bit Value
#define RCTL_DPF (1 << 22) // Discard Pause Frames
#define RCTL_PMCF (1 << 23) // Pass MAC Control Frames
#define RCTL_SECRC (1 << 26) // Strip Ethernet CRC
// Buffer Sizes
#define RCTL_BSIZE_256 (3 << 16)
#define RCTL_BSIZE_512 (2 << 16)
#define RCTL_BSIZE_1024 (1 << 16)
#define RCTL_BSIZE_2048 (0 << 16)
#define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25))
#define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25))
#define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25))
// Transmit Command
#define CMD_EOP (1 << 0) // End of Packet
#define CMD_IFCS (1 << 1) // Insert FCS
#define CMD_IC (1 << 2) // Insert Checksum
#define CMD_RS (1 << 3) // Report Status
#define CMD_RPS (1 << 4) // Report Packet Sent
#define CMD_VLE (1 << 6) // VLAN Packet Enable
#define CMD_IDE (1 << 7) // Interrupt Delay Enable
// TCTL Register
#define TCTL_EN (1 << 1) // Transmit Enable
#define TCTL_PSP (1 << 3) // Pad Short Packets
#define TCTL_CT_SHIFT 4 // Collision Threshold
#define TCTL_COLD_SHIFT 12 // Collision Distance
#define TCTL_SWXOFF (1 << 22) // Software XOFF Transmission
#define TCTL_RTLC (1 << 24) // Re-transmit on Late Collision
#define TSTA_DD (1 << 0) // Descriptor Done
#define TSTA_EC (1 << 1) // Excess Collisions
#define TSTA_LC (1 << 2) // Late Collision
#define LSTA_TU (1 << 3) // Transmit Underrun
// STATUS Register
#define STATUS_FD 0x01
#define STATUS_LU 0x02
#define STATUS_TXOFF 0x08
#define STATUS_SPEED 0xC0
#define STATUS_SPEED_10MB 0x00
#define STATUS_SPEED_100MB 0x40
#define STATUS_SPEED_1000MB1 0x80
#define STATUS_SPEED_1000MB2 0xC0
// Interrupt Masks
#define INTERRUPT_TXDW (1 << 0)
#define INTERRUPT_TXQE (1 << 1)
#define INTERRUPT_LSC (1 << 2)
#define INTERRUPT_RXSEQ (1 << 3)
#define INTERRUPT_RXDMT0 (1 << 4)
#define INTERRUPT_RXO (1 << 6)
#define INTERRUPT_RXT0 (1 << 7)
#define INTERRUPT_MDAC (1 << 9)
#define INTERRUPT_RXCFG (1 << 10)
#define INTERRUPT_PHYINT (1 << 12)
#define INTERRUPT_TXD_LOW (1 << 15)
#define INTERRUPT_SRPD (1 << 16)
// https://www.intel.com/content/dam/doc/manual/pci-pci-x-family-gbe-controllers-software-dev-manual.pdf Section 5.2
UNMAP_AFTER_INIT static bool is_valid_device_id(u16 device_id)
{
// FIXME: It would be nice to distinguish which particular device it is.
// Especially since it's needed to determine which registers we can access.
// The reason I haven't done it now is because there's some IDs with multiple devices
// and some devices with multiple IDs.
switch (device_id) {
case 0x1019: // 82547EI-A0, 82547EI-A1, 82547EI-B0, 82547GI-B0
case 0x101A: // 82547EI-B0
case 0x1010: // 82546EB-A1
case 0x1012: // 82546EB-A1
case 0x101D: // 82546EB-A1
case 0x1079: // 82546GB-B0
case 0x107A: // 82546GB-B0
case 0x107B: // 82546GB-B0
case 0x100F: // 82545EM-A
case 0x1011: // 82545EM-A
case 0x1026: // 82545GM-B
case 0x1027: // 82545GM-B
case 0x1028: // 82545GM-B
case 0x1107: // 82544EI-A4
case 0x1112: // 82544GC-A4
case 0x1013: // 82541EI-A0, 82541EI-B0
case 0x1018: // 82541EI-B0
case 0x1076: // 82541GI-B1, 82541PI-C0
case 0x1077: // 82541GI-B1
case 0x1078: // 82541ER-C0
case 0x1017: // 82540EP-A
case 0x1016: // 82540EP-A
case 0x100E: // 82540EM-A
case 0x1015: // 82540EM-A
return true;
default:
return false;
}
}
UNMAP_AFTER_INIT RefPtr<E1000NetworkAdapter> E1000NetworkAdapter::try_to_initialize(PCI::Address address)
{
auto id = PCI::get_hardware_id(address);
if (id.vendor_id != PCI::VendorID::Intel)
return {};
if (!is_valid_device_id(id.device_id))
return {};
u8 irq = PCI::get_interrupt_line(address);
auto adapter = adopt_ref_if_nonnull(new (nothrow) E1000NetworkAdapter(address, irq));
if (!adapter)
return {};
if (adapter->initialize())
return adapter;
return {};
}
UNMAP_AFTER_INIT void E1000NetworkAdapter::setup_link()
{
u32 flags = in32(REG_CTRL);
out32(REG_CTRL, flags | ECTRL_SLU);
}
UNMAP_AFTER_INIT void E1000NetworkAdapter::setup_interrupts()
{
out32(REG_INTERRUPT_RATE, 6000); // Interrupt rate of 1.536 milliseconds
out32(REG_INTERRUPT_MASK_SET, INTERRUPT_LSC | INTERRUPT_RXT0 | INTERRUPT_RXO);
in32(REG_INTERRUPT_CAUSE_READ);
enable_irq();
}
UNMAP_AFTER_INIT bool E1000NetworkAdapter::initialize()
{
dmesgln("E1000: Found @ {}", pci_address());
enable_bus_mastering(pci_address());
m_io_base = IOAddress(PCI::get_BAR1(pci_address()) & ~1);
size_t mmio_base_size = PCI::get_BAR_space_size(pci_address(), 0);
auto region_or_error = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR0(pci_address()))), Memory::page_round_up(mmio_base_size), "E1000 MMIO", Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No);
if (region_or_error.is_error())
return false;
m_mmio_region = region_or_error.release_value();
m_mmio_base = m_mmio_region->vaddr();
m_use_mmio = true;
m_interrupt_line = PCI::get_interrupt_line(pci_address());
dmesgln("E1000: port base: {}", m_io_base);
dmesgln("E1000: MMIO base: {}", PhysicalAddress(PCI::get_BAR0(pci_address()) & 0xfffffffc));
dmesgln("E1000: MMIO base size: {} bytes", mmio_base_size);
dmesgln("E1000: Interrupt line: {}", m_interrupt_line);
detect_eeprom();
dmesgln("E1000: Has EEPROM? {}", m_has_eeprom);
read_mac_address();
const auto& mac = mac_address();
dmesgln("E1000: MAC address: {}", mac.to_string());
initialize_rx_descriptors();
initialize_tx_descriptors();
setup_link();
setup_interrupts();
return true;
}
UNMAP_AFTER_INIT E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address address, u8 irq)
: PCI::Device(address)
, IRQHandler(irq)
, m_rx_descriptors_region(MM.allocate_contiguous_kernel_region(Memory::page_round_up(sizeof(e1000_rx_desc) * number_of_rx_descriptors + 16), "E1000 RX Descriptors", Memory::Region::Access::ReadWrite).release_value())
, m_tx_descriptors_region(MM.allocate_contiguous_kernel_region(Memory::page_round_up(sizeof(e1000_tx_desc) * number_of_tx_descriptors + 16), "E1000 TX Descriptors", Memory::Region::Access::ReadWrite).release_value())
{
set_interface_name(pci_address());
}
UNMAP_AFTER_INIT E1000NetworkAdapter::~E1000NetworkAdapter()
{
}
bool E1000NetworkAdapter::handle_irq(const RegisterState&)
{
u32 status = in32(REG_INTERRUPT_CAUSE_READ);
m_entropy_source.add_random_event(status);
if (status == 0)
return false;
if (status & INTERRUPT_LSC) {
u32 flags = in32(REG_CTRL);
out32(REG_CTRL, flags | ECTRL_SLU);
}
if (status & INTERRUPT_RXDMT0) {
// Threshold OK?
}
if (status & INTERRUPT_RXO) {
dbgln_if(E1000_DEBUG, "E1000: RX buffer overrun");
}
if (status & INTERRUPT_RXT0) {
receive();
}
m_wait_queue.wake_all();
out32(REG_INTERRUPT_CAUSE_READ, 0xffffffff);
return true;
}
UNMAP_AFTER_INIT void E1000NetworkAdapter::detect_eeprom()
{
out32(REG_EEPROM, 0x1);
for (int i = 0; i < 999; ++i) {
u32 data = in32(REG_EEPROM);
if (data & 0x10) {
m_has_eeprom = true;
return;
}
}
m_has_eeprom = false;
}
UNMAP_AFTER_INIT u32 E1000NetworkAdapter::read_eeprom(u8 address)
{
u16 data = 0;
u32 tmp = 0;
if (m_has_eeprom) {
out32(REG_EEPROM, ((u32)address << 8) | 1);
while (!((tmp = in32(REG_EEPROM)) & (1 << 4)))
;
} else {
out32(REG_EEPROM, ((u32)address << 2) | 1);
while (!((tmp = in32(REG_EEPROM)) & (1 << 1)))
;
}
data = (tmp >> 16) & 0xffff;
return data;
}
UNMAP_AFTER_INIT void E1000NetworkAdapter::read_mac_address()
{
if (m_has_eeprom) {
MACAddress mac {};
u32 tmp = read_eeprom(0);
mac[0] = tmp & 0xff;
mac[1] = tmp >> 8;
tmp = read_eeprom(1);
mac[2] = tmp & 0xff;
mac[3] = tmp >> 8;
tmp = read_eeprom(2);
mac[4] = tmp & 0xff;
mac[5] = tmp >> 8;
set_mac_address(mac);
} else {
VERIFY_NOT_REACHED();
}
}
bool E1000NetworkAdapter::link_up()
{
return (in32(REG_STATUS) & STATUS_LU);
}
UNMAP_AFTER_INIT void E1000NetworkAdapter::initialize_rx_descriptors()
{
auto* rx_descriptors = (e1000_tx_desc*)m_rx_descriptors_region->vaddr().as_ptr();
constexpr auto rx_buffer_size = 8192;
constexpr auto rx_buffer_page_count = rx_buffer_size / PAGE_SIZE;
m_rx_buffer_region = MM.allocate_contiguous_kernel_region(rx_buffer_size * number_of_rx_descriptors, "E1000 RX buffers", Memory::Region::Access::ReadWrite).release_value();
for (size_t i = 0; i < number_of_rx_descriptors; ++i) {
auto& descriptor = rx_descriptors[i];
m_rx_buffers[i] = m_rx_buffer_region->vaddr().as_ptr() + rx_buffer_size * i;
descriptor.addr = m_rx_buffer_region->physical_page(rx_buffer_page_count * i)->paddr().get();
descriptor.status = 0;
}
out32(REG_RXDESCLO, m_rx_descriptors_region->physical_page(0)->paddr().get());
out32(REG_RXDESCHI, 0);
out32(REG_RXDESCLEN, number_of_rx_descriptors * sizeof(e1000_rx_desc));
out32(REG_RXDESCHEAD, 0);
out32(REG_RXDESCTAIL, number_of_rx_descriptors - 1);
out32(REG_RCTRL, RCTL_EN | RCTL_SBP | RCTL_UPE | RCTL_MPE | RCTL_LBM_NONE | RTCL_RDMTS_HALF | RCTL_BAM | RCTL_SECRC | RCTL_BSIZE_8192);
}
UNMAP_AFTER_INIT void E1000NetworkAdapter::initialize_tx_descriptors()
{
auto* tx_descriptors = (e1000_tx_desc*)m_tx_descriptors_region->vaddr().as_ptr();
constexpr auto tx_buffer_size = 8192;
constexpr auto tx_buffer_page_count = tx_buffer_size / PAGE_SIZE;
m_tx_buffer_region = MM.allocate_contiguous_kernel_region(tx_buffer_size * number_of_tx_descriptors, "E1000 TX buffers", Memory::Region::Access::ReadWrite).release_value();
for (size_t i = 0; i < number_of_tx_descriptors; ++i) {
auto& descriptor = tx_descriptors[i];
m_tx_buffers[i] = m_tx_buffer_region->vaddr().as_ptr() + tx_buffer_size * i;
descriptor.addr = m_tx_buffer_region->physical_page(tx_buffer_page_count * i)->paddr().get();
descriptor.cmd = 0;
}
out32(REG_TXDESCLO, m_tx_descriptors_region->physical_page(0)->paddr().get());
out32(REG_TXDESCHI, 0);
out32(REG_TXDESCLEN, number_of_tx_descriptors * sizeof(e1000_tx_desc));
out32(REG_TXDESCHEAD, 0);
out32(REG_TXDESCTAIL, 0);
out32(REG_TCTRL, in32(REG_TCTRL) | TCTL_EN | TCTL_PSP);
out32(REG_TIPG, 0x0060200A);
}
void E1000NetworkAdapter::out8(u16 address, u8 data)
{
dbgln_if(E1000_DEBUG, "E1000: OUT8 {:#02x} @ {:#04x}", data, address);
if (m_use_mmio) {
auto* ptr = (volatile u8*)(m_mmio_base.get() + address);
*ptr = data;
return;
}
m_io_base.offset(address).out(data);
}
void E1000NetworkAdapter::out16(u16 address, u16 data)
{
dbgln_if(E1000_DEBUG, "E1000: OUT16 {:#04x} @ {:#04x}", data, address);
if (m_use_mmio) {
auto* ptr = (volatile u16*)(m_mmio_base.get() + address);
*ptr = data;
return;
}
m_io_base.offset(address).out(data);
}
void E1000NetworkAdapter::out32(u16 address, u32 data)
{
dbgln_if(E1000_DEBUG, "E1000: OUT32 {:#08x} @ {:#04x}", data, address);
if (m_use_mmio) {
auto* ptr = (volatile u32*)(m_mmio_base.get() + address);
*ptr = data;
return;
}
m_io_base.offset(address).out(data);
}
u8 E1000NetworkAdapter::in8(u16 address)
{
dbgln_if(E1000_DEBUG, "E1000: IN8 @ {:#04x}", address);
if (m_use_mmio)
return *(volatile u8*)(m_mmio_base.get() + address);
return m_io_base.offset(address).in<u8>();
}
u16 E1000NetworkAdapter::in16(u16 address)
{
dbgln_if(E1000_DEBUG, "E1000: IN16 @ {:#04x}", address);
if (m_use_mmio)
return *(volatile u16*)(m_mmio_base.get() + address);
return m_io_base.offset(address).in<u16>();
}
u32 E1000NetworkAdapter::in32(u16 address)
{
dbgln_if(E1000_DEBUG, "E1000: IN32 @ {:#04x}", address);
if (m_use_mmio)
return *(volatile u32*)(m_mmio_base.get() + address);
return m_io_base.offset(address).in<u32>();
}
void E1000NetworkAdapter::send_raw(ReadonlyBytes payload)
{
disable_irq();
size_t tx_current = in32(REG_TXDESCTAIL) % number_of_tx_descriptors;
dbgln_if(E1000_DEBUG, "E1000: Sending packet ({} bytes)", payload.size());
auto* tx_descriptors = (e1000_tx_desc*)m_tx_descriptors_region->vaddr().as_ptr();
auto& descriptor = tx_descriptors[tx_current];
VERIFY(payload.size() <= 8192);
auto* vptr = (void*)m_tx_buffers[tx_current];
memcpy(vptr, payload.data(), payload.size());
descriptor.length = payload.size();
descriptor.status = 0;
descriptor.cmd = CMD_EOP | CMD_IFCS | CMD_RS;
dbgln_if(E1000_DEBUG, "E1000: Using tx descriptor {} (head is at {})", tx_current, in32(REG_TXDESCHEAD));
tx_current = (tx_current + 1) % number_of_tx_descriptors;
cli();
enable_irq();
out32(REG_TXDESCTAIL, tx_current);
for (;;) {
if (descriptor.status) {
sti();
break;
}
m_wait_queue.wait_forever("E1000NetworkAdapter");
}
dbgln_if(E1000_DEBUG, "E1000: Sent packet, status is now {:#02x}!", (u8)descriptor.status);
}
void E1000NetworkAdapter::receive()
{
auto* rx_descriptors = (e1000_tx_desc*)m_rx_descriptors_region->vaddr().as_ptr();
u32 rx_current;
for (;;) {
rx_current = in32(REG_RXDESCTAIL) % number_of_rx_descriptors;
rx_current = (rx_current + 1) % number_of_rx_descriptors;
if (!(rx_descriptors[rx_current].status & 1))
break;
auto* buffer = m_rx_buffers[rx_current];
u16 length = rx_descriptors[rx_current].length;
VERIFY(length <= 8192);
dbgln_if(E1000_DEBUG, "E1000: Received 1 packet @ {:p} ({} bytes)", buffer, length);
did_receive({ buffer, length });
rx_descriptors[rx_current].status = 0;
out32(REG_RXDESCTAIL, rx_current);
}
}
i32 E1000NetworkAdapter::link_speed()
{
if (!link_up())
return NetworkAdapter::LINKSPEED_INVALID;
u32 speed = in32(REG_STATUS) & STATUS_SPEED;
switch (speed) {
case STATUS_SPEED_10MB:
return 10;
case STATUS_SPEED_100MB:
return 100;
case STATUS_SPEED_1000MB1:
case STATUS_SPEED_1000MB2:
return 1000;
default:
return NetworkAdapter::LINKSPEED_INVALID;
}
}
bool E1000NetworkAdapter::link_full_duplex()
{
u32 status = in32(REG_STATUS);
return !!(status & STATUS_FD);
}
}
|