1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
#include "MemoryManager.h"
#include <AK/Assertions.h>
#include <AK/kstdio.h>
#include <AK/kmalloc.h>
#include "i386.h"
#include "StdLib.h"
#include "Task.h"
static MemoryManager* s_the;
MemoryManager& MemoryManager::the()
{
return *s_the;
}
MemoryManager::MemoryManager()
{
m_pageDirectory = (dword*)0x5000;
m_pageTableZero = (dword*)0x6000;
m_pageTableOne = (dword*)0x7000;
initializePaging();
}
MemoryManager::~MemoryManager()
{
}
void MemoryManager::initializePaging()
{
static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
memset(m_pageTableZero, 0, 4096);
memset(m_pageTableOne, 0, 4096);
memset(m_pageDirectory, 0, 4096);
kprintf("MM: Page directory @ %p\n", m_pageDirectory);
kprintf("MM: Page table zero @ %p\n", m_pageTableZero);
kprintf("MM: Page table one @ %p\n", m_pageTableOne);
// Make null dereferences crash.
protectMap(LinearAddress(0), 4 * KB);
identityMap(LinearAddress(4096), 4 * MB);
// Put pages between 4MB and 16MB in the page freelist.
for (size_t i = (4 * MB) + 1024; i < (16 * MB); i += PAGE_SIZE) {
m_freePages.append(PhysicalAddress(i));
}
asm volatile("movl %%eax, %%cr3"::"a"(m_pageDirectory));
asm volatile(
"movl %cr0, %eax\n"
"orl $0x80000001, %eax\n"
"movl %eax, %cr0\n"
);
}
auto MemoryManager::ensurePTE(LinearAddress linearAddress) -> PageTableEntry
{
dword pageDirectoryIndex = (linearAddress.get() >> 22) & 0x3ff;
dword pageTableIndex = (linearAddress.get() >> 12) & 0x3ff;
PageDirectoryEntry pde = PageDirectoryEntry(&m_pageDirectory[pageDirectoryIndex]);
if (!pde.isPresent()) {
kprintf("PDE %u !present, allocating\n", pageDirectoryIndex);
if (pageDirectoryIndex == 0) {
pde.setPageTableBase((dword)m_pageTableZero);
pde.setUserAllowed(true);
pde.setPresent(true);
pde.setWritable(true);
} else if (pageDirectoryIndex == 1) {
pde.setPageTableBase((dword)m_pageTableOne);
pde.setUserAllowed(true);
pde.setPresent(true);
pde.setWritable(true);
} else {
// FIXME: We need an allocator!
ASSERT_NOT_REACHED();
}
}
return PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
}
void MemoryManager::protectMap(LinearAddress linearAddress, size_t length)
{
// FIXME: ASSERT(linearAddress is 4KB aligned);
for (dword offset = 0; offset < length; offset += 4096) {
auto pteAddress = linearAddress.offset(offset);
auto pte = ensurePTE(pteAddress);
pte.setPhysicalPageBase(pteAddress.get());
pte.setUserAllowed(false);
pte.setPresent(false);
pte.setWritable(false);
flushTLB(pteAddress);
}
}
void MemoryManager::identityMap(LinearAddress linearAddress, size_t length)
{
// FIXME: ASSERT(linearAddress is 4KB aligned);
for (dword offset = 0; offset < length; offset += 4096) {
auto pteAddress = linearAddress.offset(offset);
auto pte = ensurePTE(pteAddress);
pte.setPhysicalPageBase(pteAddress.get());
pte.setUserAllowed(true);
pte.setPresent(true);
pte.setWritable(true);
flushTLB(pteAddress);
}
}
void MemoryManager::initialize()
{
s_the = new MemoryManager;
}
PageFaultResponse MemoryManager::handlePageFault(const PageFault& fault)
{
kprintf("MM: handlePageFault(%w) at laddr=%p\n", fault.code(), fault.address().get());
if (fault.isNotPresent()) {
kprintf(" >> NP fault!\n");
} else if (fault.isProtectionViolation()) {
kprintf(" >> PV fault!\n");
}
return PageFaultResponse::ShouldCrash;
}
RetainPtr<Zone> MemoryManager::createZone(size_t size)
{
auto pages = allocatePhysicalPages(ceilDiv(size, PAGE_SIZE));
if (pages.isEmpty()) {
kprintf("MM: createZone: no physical pages for size %u", size);
return nullptr;
}
return adopt(*new Zone(move(pages)));
}
Vector<PhysicalAddress> MemoryManager::allocatePhysicalPages(size_t count)
{
if (count > m_freePages.size())
return { };
Vector<PhysicalAddress> pages;
pages.ensureCapacity(count);
for (size_t i = 0; i < count; ++i)
pages.append(m_freePages.takeLast());
return pages;
}
byte* MemoryManager::quickMapOnePage(PhysicalAddress physicalAddress)
{
auto pte = ensurePTE(LinearAddress(4 * MB));
kprintf("quickmap %x @ %x {pte @ %p}\n", physicalAddress.get(), 4*MB, pte.ptr());
pte.setPhysicalPageBase(physicalAddress.pageBase());
pte.setPresent(true);
pte.setWritable(true);
flushTLB(LinearAddress(4 * MB));
return (byte*)(4 * MB);
}
void MemoryManager::flushEntireTLB()
{
asm volatile(
"mov %cr3, %eax\n"
"mov %eax, %cr3\n"
);
}
void MemoryManager::flushTLB(LinearAddress laddr)
{
asm volatile("invlpg %0": :"m" (*(char*)laddr.get()));
}
bool MemoryManager::unmapRegion(Task& task, Task::Region& region)
{
auto& zone = *region.zone;
for (size_t i = 0; i < zone.m_pages.size(); ++i) {
auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
auto pte = ensurePTE(laddr);
pte.setPhysicalPageBase(0);
pte.setPresent(false);
pte.setWritable(false);
pte.setUserAllowed(false);
flushTLB(laddr);
// kprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, zone.m_pages[i].get());
}
return true;
}
bool MemoryManager::unmapRegionsForTask(Task& task)
{
for (auto& region : task.m_regions) {
if (!unmapRegion(task, *region))
return false;
}
return true;
}
bool MemoryManager::mapRegion(Task& task, Task::Region& region)
{
auto& zone = *region.zone;
for (size_t i = 0; i < zone.m_pages.size(); ++i) {
auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
auto pte = ensurePTE(laddr);
pte.setPhysicalPageBase(zone.m_pages[i].get());
pte.setPresent(true);
pte.setWritable(true);
pte.setUserAllowed(!task.isRing0());
flushTLB(laddr);
//kprintf("MM: >> Mapped L%x => P%x <<\n", laddr, zone.m_pages[i].get());
}
return true;
}
bool MemoryManager::mapRegionsForTask(Task& task)
{
for (auto& region : task.m_regions) {
if (!mapRegion(task, *region))
return false;
}
return true;
}
bool copyToZone(Zone& zone, const void* data, size_t size)
{
if (zone.size() < size) {
kprintf("copyToZone: can't fit %u bytes into zone with size %u\n", size, zone.size());
return false;
}
auto* dataptr = (const byte*)data;
size_t remaining = size;
for (size_t i = 0; i < zone.m_pages.size(); ++i) {
byte* dest = MemoryManager::the().quickMapOnePage(zone.m_pages[i]);
kprintf("memcpy(%p, %p, %u)\n", dest, dataptr, min(PAGE_SIZE, remaining));
memcpy(dest, dataptr, min(PAGE_SIZE, remaining));
dataptr += PAGE_SIZE;
remaining -= PAGE_SIZE;
}
return true;
}
|