1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Checked.h>
#include <Kernel/Memory/VirtualRangeAllocator.h>
#include <Kernel/Random.h>
#define VM_GUARD_PAGES
namespace Kernel::Memory {
VirtualRangeAllocator::VirtualRangeAllocator()
: m_total_range({}, 0)
{
}
ErrorOr<void> VirtualRangeAllocator::initialize_with_range(VirtualAddress base, size_t size)
{
m_total_range = { base, size };
TRY(m_available_ranges.try_insert(base.get(), VirtualRange { base, size }));
return {};
}
ErrorOr<void> VirtualRangeAllocator::initialize_from_parent(VirtualRangeAllocator const& parent_allocator)
{
SpinlockLocker lock(parent_allocator.m_lock);
m_total_range = parent_allocator.m_total_range;
m_available_ranges.clear();
for (auto it = parent_allocator.m_available_ranges.begin(); !it.is_end(); ++it) {
TRY(m_available_ranges.try_insert(it.key(), VirtualRange(*it)));
}
return {};
}
void VirtualRangeAllocator::dump() const
{
VERIFY(m_lock.is_locked());
dbgln("VirtualRangeAllocator({})", this);
for (auto& range : m_available_ranges) {
dbgln(" {:x} -> {:x}", range.base().get(), range.end().get() - 1);
}
}
void VirtualRangeAllocator::carve_from_region(VirtualRange const& from, VirtualRange const& range)
{
VERIFY(m_lock.is_locked());
auto remaining_parts = from.carve(range);
VERIFY(remaining_parts.size() >= 1);
VERIFY(m_total_range.contains(remaining_parts[0]));
m_available_ranges.remove(from.base().get());
m_available_ranges.insert(remaining_parts[0].base().get(), remaining_parts[0]);
if (remaining_parts.size() == 2) {
VERIFY(m_total_range.contains(remaining_parts[1]));
m_available_ranges.insert(remaining_parts[1].base().get(), remaining_parts[1]);
}
}
ErrorOr<VirtualRange> VirtualRangeAllocator::try_allocate_randomized(size_t size, size_t alignment)
{
if (!size)
return EINVAL;
VERIFY((size % PAGE_SIZE) == 0);
VERIFY((alignment % PAGE_SIZE) == 0);
// FIXME: I'm sure there's a smarter way to do this.
static constexpr size_t maximum_randomization_attempts = 1000;
for (size_t i = 0; i < maximum_randomization_attempts; ++i) {
VirtualAddress random_address { round_up_to_power_of_two(get_fast_random<FlatPtr>() % m_total_range.end().get(), alignment) };
if (!m_total_range.contains(random_address, size))
continue;
auto range_or_error = try_allocate_specific(random_address, size);
if (!range_or_error.is_error())
return range_or_error.release_value();
}
return try_allocate_anywhere(size, alignment);
}
ErrorOr<VirtualRange> VirtualRangeAllocator::try_allocate_anywhere(size_t size, size_t alignment)
{
if (!size)
return EINVAL;
VERIFY((size % PAGE_SIZE) == 0);
VERIFY((alignment % PAGE_SIZE) == 0);
#ifdef VM_GUARD_PAGES
// NOTE: We pad VM allocations with a guard page on each side.
if (Checked<size_t>::addition_would_overflow(size, PAGE_SIZE * 2))
return EOVERFLOW;
size_t effective_size = size + PAGE_SIZE * 2;
size_t offset_from_effective_base = PAGE_SIZE;
#else
size_t effective_size = size;
size_t offset_from_effective_base = 0;
#endif
if (Checked<size_t>::addition_would_overflow(effective_size, alignment))
return EOVERFLOW;
SpinlockLocker lock(m_lock);
for (auto it = m_available_ranges.begin(); !it.is_end(); ++it) {
auto& available_range = *it;
// FIXME: This check is probably excluding some valid candidates when using a large alignment.
if (available_range.size() < (effective_size + alignment))
continue;
FlatPtr initial_base = available_range.base().offset(offset_from_effective_base).get();
FlatPtr aligned_base = round_up_to_power_of_two(initial_base, alignment);
VirtualRange const allocated_range(VirtualAddress(aligned_base), size);
VERIFY(m_total_range.contains(allocated_range));
if (available_range == allocated_range) {
m_available_ranges.remove(it.key());
return allocated_range;
}
carve_from_region(*it, allocated_range);
return allocated_range;
}
dmesgln("VirtualRangeAllocator: Failed to allocate anywhere: size={}, alignment={}", size, alignment);
return ENOMEM;
}
ErrorOr<VirtualRange> VirtualRangeAllocator::try_allocate_specific(VirtualAddress base, size_t size)
{
if (!size)
return EINVAL;
VERIFY(base.is_page_aligned());
VERIFY((size % PAGE_SIZE) == 0);
VirtualRange const allocated_range(base, size);
if (!m_total_range.contains(allocated_range))
return ENOMEM;
SpinlockLocker lock(m_lock);
auto available_range = m_available_ranges.find_largest_not_above(base.get());
if (!available_range)
return ENOMEM;
if (!available_range->contains(allocated_range))
return ENOMEM;
if (*available_range == allocated_range) {
m_available_ranges.remove(available_range->base().get());
return allocated_range;
}
carve_from_region(*available_range, allocated_range);
return allocated_range;
}
void VirtualRangeAllocator::deallocate(VirtualRange const& range)
{
SpinlockLocker lock(m_lock);
VERIFY(m_total_range.contains(range));
VERIFY(range.size());
VERIFY((range.size() % PAGE_SIZE) == 0);
VERIFY(range.base() < range.end());
VERIFY(!m_available_ranges.is_empty());
VirtualRange merged_range = range;
{
// Try merging with preceding range.
auto* preceding_range = m_available_ranges.find_largest_not_above(range.base().get());
if (preceding_range && preceding_range->end() == range.base()) {
preceding_range->m_size += range.size();
merged_range = *preceding_range;
} else {
m_available_ranges.insert(range.base().get(), range);
}
}
{
// Try merging with following range.
auto* following_range = m_available_ranges.find_largest_not_above(range.end().get());
if (following_range && merged_range.end() == following_range->base()) {
auto* existing_range = m_available_ranges.find_largest_not_above(range.base().get());
VERIFY(existing_range->base() == merged_range.base());
existing_range->m_size += following_range->size();
m_available_ranges.remove(following_range->base().get());
}
}
}
}
|