summaryrefslogtreecommitdiff
path: root/Kernel/Memory/VirtualRangeAllocator.cpp
blob: 351ec0cd8b97fc78f80c8822fc051f3c6f41f3c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*
 * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Checked.h>
#include <Kernel/Memory/VirtualRangeAllocator.h>
#include <Kernel/Random.h>

#define VM_GUARD_PAGES

namespace Kernel::Memory {

VirtualRangeAllocator::VirtualRangeAllocator()
    : m_total_range({}, 0)
{
}

void VirtualRangeAllocator::initialize_with_range(VirtualAddress base, size_t size)
{
    m_total_range = { base, size };
    m_available_ranges.insert(base.get(), VirtualRange { base, size });
}

void VirtualRangeAllocator::initialize_from_parent(VirtualRangeAllocator const& parent_allocator)
{
    ScopedSpinlock lock(parent_allocator.m_lock);
    m_total_range = parent_allocator.m_total_range;
    m_available_ranges.clear();
    for (auto it = parent_allocator.m_available_ranges.begin(); !it.is_end(); ++it) {
        m_available_ranges.insert(it.key(), *it);
    }
}

void VirtualRangeAllocator::dump() const
{
    VERIFY(m_lock.is_locked());
    dbgln("VirtualRangeAllocator({})", this);
    for (auto& range : m_available_ranges) {
        dbgln("    {:x} -> {:x}", range.base().get(), range.end().get() - 1);
    }
}

void VirtualRangeAllocator::carve_at_iterator(auto& it, VirtualRange const& range)
{
    VERIFY(m_lock.is_locked());
    auto remaining_parts = (*it).carve(range);
    VERIFY(remaining_parts.size() >= 1);
    VERIFY(m_total_range.contains(remaining_parts[0]));
    m_available_ranges.remove(it.key());
    m_available_ranges.insert(remaining_parts[0].base().get(), remaining_parts[0]);
    if (remaining_parts.size() == 2) {
        VERIFY(m_total_range.contains(remaining_parts[1]));
        m_available_ranges.insert(remaining_parts[1].base().get(), remaining_parts[1]);
    }
}

Optional<VirtualRange> VirtualRangeAllocator::allocate_randomized(size_t size, size_t alignment)
{
    if (!size)
        return {};

    VERIFY((size % PAGE_SIZE) == 0);
    VERIFY((alignment % PAGE_SIZE) == 0);

    // FIXME: I'm sure there's a smarter way to do this.
    static constexpr size_t maximum_randomization_attempts = 1000;
    for (size_t i = 0; i < maximum_randomization_attempts; ++i) {
        VirtualAddress random_address { round_up_to_power_of_two(get_fast_random<FlatPtr>() % m_total_range.end().get(), alignment) };

        if (!m_total_range.contains(random_address, size))
            continue;

        auto range = allocate_specific(random_address, size);
        if (range.has_value())
            return range;
    }

    return allocate_anywhere(size, alignment);
}

Optional<VirtualRange> VirtualRangeAllocator::allocate_anywhere(size_t size, size_t alignment)
{
    if (!size)
        return {};

    VERIFY((size % PAGE_SIZE) == 0);
    VERIFY((alignment % PAGE_SIZE) == 0);

#ifdef VM_GUARD_PAGES
    // NOTE: We pad VM allocations with a guard page on each side.
    if (Checked<size_t>::addition_would_overflow(size, PAGE_SIZE * 2))
        return {};

    size_t effective_size = size + PAGE_SIZE * 2;
    size_t offset_from_effective_base = PAGE_SIZE;
#else
    size_t effective_size = size;
    size_t offset_from_effective_base = 0;
#endif

    if (Checked<size_t>::addition_would_overflow(effective_size, alignment))
        return {};

    ScopedSpinlock lock(m_lock);

    for (auto it = m_available_ranges.begin(); !it.is_end(); ++it) {
        auto& available_range = *it;
        // FIXME: This check is probably excluding some valid candidates when using a large alignment.
        if (available_range.size() < (effective_size + alignment))
            continue;

        FlatPtr initial_base = available_range.base().offset(offset_from_effective_base).get();
        FlatPtr aligned_base = round_up_to_power_of_two(initial_base, alignment);

        VirtualRange const allocated_range(VirtualAddress(aligned_base), size);

        VERIFY(m_total_range.contains(allocated_range));

        if (available_range == allocated_range) {
            m_available_ranges.remove(it.key());
            return allocated_range;
        }
        carve_at_iterator(it, allocated_range);
        return allocated_range;
    }
    dmesgln("VirtualRangeAllocator: Failed to allocate anywhere: size={}, alignment={}", size, alignment);
    return {};
}

Optional<VirtualRange> VirtualRangeAllocator::allocate_specific(VirtualAddress base, size_t size)
{
    if (!size)
        return {};

    VERIFY(base.is_page_aligned());
    VERIFY((size % PAGE_SIZE) == 0);

    VirtualRange const allocated_range(base, size);
    if (!m_total_range.contains(allocated_range)) {
        return {};
    }

    ScopedSpinlock lock(m_lock);
    for (auto it = m_available_ranges.begin(); !it.is_end(); ++it) {
        auto& available_range = *it;
        if (!available_range.contains(base, size))
            continue;
        if (available_range == allocated_range) {
            m_available_ranges.remove(it.key());
            return allocated_range;
        }
        carve_at_iterator(it, allocated_range);
        return allocated_range;
    }
    return {};
}

void VirtualRangeAllocator::deallocate(VirtualRange const& range)
{
    ScopedSpinlock lock(m_lock);
    VERIFY(m_total_range.contains(range));
    VERIFY(range.size());
    VERIFY((range.size() % PAGE_SIZE) == 0);
    VERIFY(range.base() < range.end());
    VERIFY(!m_available_ranges.is_empty());

    VirtualRange merged_range = range;

    {
        // Try merging with preceding range.
        auto* preceding_range = m_available_ranges.find_largest_not_above(range.base().get());
        if (preceding_range && preceding_range->end() == range.base()) {
            preceding_range->m_size += range.size();
            merged_range = *preceding_range;
        } else {
            m_available_ranges.insert(range.base().get(), range);
        }
    }

    {
        // Try merging with following range.
        auto* following_range = m_available_ranges.find_largest_not_above(range.end().get());
        if (following_range && merged_range.end() == following_range->base()) {
            auto* existing_range = m_available_ranges.find_largest_not_above(range.base().get());
            VERIFY(existing_range->base() == merged_range.base());
            existing_range->m_size += following_range->size();
            m_available_ranges.remove(following_range->base().get());
        }
    }
}

}