1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Memory.h>
#include <AK/Singleton.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PageDirectory.h>
#include <Kernel/Prekernel/Prekernel.h>
#include <Kernel/Process.h>
#include <Kernel/Random.h>
#include <Kernel/Sections.h>
extern u8 end_of_kernel_image[];
namespace Kernel::Memory {
static Singleton<HashMap<FlatPtr, PageDirectory*>> s_cr3_map;
static HashMap<FlatPtr, PageDirectory*>& cr3_map()
{
VERIFY_INTERRUPTS_DISABLED();
return *s_cr3_map;
}
RefPtr<PageDirectory> PageDirectory::find_by_cr3(FlatPtr cr3)
{
SpinlockLocker lock(s_mm_lock);
return cr3_map().get(cr3).value_or({});
}
UNMAP_AFTER_INIT NonnullRefPtr<PageDirectory> PageDirectory::must_create_kernel_page_directory()
{
auto directory = adopt_ref_if_nonnull(new (nothrow) PageDirectory).release_nonnull();
// make sure this starts in a new page directory to make MemoryManager::initialize_physical_pages() happy
FlatPtr start_of_range = ((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000;
directory->m_range_allocator.initialize_with_range(VirtualAddress(start_of_range), KERNEL_PD_END - start_of_range);
return directory;
}
RefPtr<PageDirectory> PageDirectory::try_create_for_userspace(VirtualRangeAllocator const* parent_range_allocator)
{
constexpr FlatPtr userspace_range_base = 0x00800000;
FlatPtr const userspace_range_ceiling = USER_RANGE_CEILING;
auto directory = adopt_ref_if_nonnull(new (nothrow) PageDirectory);
if (!directory)
return {};
if (parent_range_allocator) {
directory->m_range_allocator.initialize_from_parent(*parent_range_allocator);
} else {
size_t random_offset = (get_fast_random<u8>() % 32 * MiB) & PAGE_MASK;
u32 base = userspace_range_base + random_offset;
directory->m_range_allocator.initialize_with_range(VirtualAddress(base), userspace_range_ceiling - base);
}
// NOTE: Take the MM lock since we need it for quickmap.
SpinlockLocker lock(s_mm_lock);
#if ARCH(X86_64)
directory->m_pml4t = MM.allocate_user_physical_page();
if (!directory->m_pml4t)
return {};
#endif
directory->m_directory_table = MM.allocate_user_physical_page();
if (!directory->m_directory_table)
return {};
auto kernel_pd_index = (kernel_mapping_base >> 30) & 0x1ffu;
for (size_t i = 0; i < kernel_pd_index; i++) {
directory->m_directory_pages[i] = MM.allocate_user_physical_page();
if (!directory->m_directory_pages[i])
return {};
}
// Share the top 1 GiB of kernel-only mappings (>=kernel_mapping_base)
directory->m_directory_pages[kernel_pd_index] = MM.kernel_page_directory().m_directory_pages[kernel_pd_index];
#if ARCH(X86_64)
{
auto& table = *(PageDirectoryPointerTable*)MM.quickmap_page(*directory->m_pml4t);
table.raw[0] = (FlatPtr)directory->m_directory_table->paddr().as_ptr() | 7;
MM.unquickmap_page();
}
#endif
{
auto& table = *(PageDirectoryPointerTable*)MM.quickmap_page(*directory->m_directory_table);
for (size_t i = 0; i < sizeof(m_directory_pages) / sizeof(m_directory_pages[0]); i++) {
if (directory->m_directory_pages[i]) {
#if ARCH(I386)
table.raw[i] = (FlatPtr)directory->m_directory_pages[i]->paddr().as_ptr() | 1;
#else
table.raw[i] = (FlatPtr)directory->m_directory_pages[i]->paddr().as_ptr() | 7;
#endif
}
}
// 2 ** MAXPHYADDR - 1
// Where MAXPHYADDR = physical_address_bit_width
u64 max_physical_address = (1ULL << Processor::current().physical_address_bit_width()) - 1;
// bit 63 = no execute
// bit 7 = page size
// bit 5 = accessed
// bit 4 = cache disable
// bit 3 = write through
// bit 2 = user/supervisor
// bit 1 = read/write
// bit 0 = present
constexpr u64 pdpte_bit_flags = 0x80000000000000BF;
// This is to notify us of bugs where we're:
// 1. Going over what the processor is capable of.
// 2. Writing into the reserved bits (51:MAXPHYADDR), where doing so throws a GPF
// when writing out the PDPT pointer to CR3.
// The reason we're not checking the page directory's physical address directly is because
// we're checking for sign extension when putting it into a PDPTE. See issue #4584.
for (auto table_entry : table.raw)
VERIFY((table_entry & ~pdpte_bit_flags) <= max_physical_address);
MM.unquickmap_page();
}
// Clone bottom 2 MiB of mappings from kernel_page_directory
PageDirectoryEntry buffer;
auto* kernel_pd = MM.quickmap_pd(MM.kernel_page_directory(), 0);
memcpy(&buffer, kernel_pd, sizeof(PageDirectoryEntry));
auto* new_pd = MM.quickmap_pd(*directory, 0);
memcpy(new_pd, &buffer, sizeof(PageDirectoryEntry));
cr3_map().set(directory->cr3(), directory.ptr());
return directory;
}
PageDirectory::PageDirectory()
{
}
UNMAP_AFTER_INIT void PageDirectory::allocate_kernel_directory()
{
// Adopt the page tables already set up by boot.S
#if ARCH(X86_64)
dmesgln("MM: boot_pml4t @ {}", boot_pml4t);
m_pml4t = PhysicalPage::create(boot_pml4t, MayReturnToFreeList::No);
#endif
dmesgln("MM: boot_pdpt @ {}", boot_pdpt);
dmesgln("MM: boot_pd0 @ {}", boot_pd0);
dmesgln("MM: boot_pd_kernel @ {}", boot_pd_kernel);
m_directory_table = PhysicalPage::create(boot_pdpt, MayReturnToFreeList::No);
m_directory_pages[0] = PhysicalPage::create(boot_pd0, MayReturnToFreeList::No);
m_directory_pages[(kernel_mapping_base >> 30) & 0x1ff] = PhysicalPage::create(boot_pd_kernel, MayReturnToFreeList::No);
}
PageDirectory::~PageDirectory()
{
SpinlockLocker lock(s_mm_lock);
if (m_space)
cr3_map().remove(cr3());
}
}
|