summaryrefslogtreecommitdiff
path: root/Kernel/Memory/MemoryManager.h
blob: 1067e6e2d1607dadbfe614a49938e98fb0171bfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Concepts.h>
#include <AK/HashTable.h>
#include <AK/NonnullOwnPtrVector.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/String.h>
#include <Kernel/Arch/x86/PageFault.h>
#include <Kernel/Arch/x86/TrapFrame.h>
#include <Kernel/Forward.h>
#include <Kernel/Memory/AllocationStrategy.h>
#include <Kernel/Memory/PhysicalPage.h>
#include <Kernel/Memory/PhysicalRegion.h>
#include <Kernel/Memory/Region.h>
#include <Kernel/Memory/VMObject.h>
#include <Kernel/SpinLock.h>

namespace Kernel {

constexpr bool page_round_up_would_wrap(FlatPtr x)
{
    return x > (explode_byte(0xFF) & ~0xFFF);
}

constexpr FlatPtr page_round_up(FlatPtr x)
{
    FlatPtr rounded = (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
    // Rounding up >0xfffff000 wraps back to 0. That's never what we want.
    VERIFY(x == 0 || rounded != 0);
    return rounded;
}

constexpr FlatPtr page_round_down(FlatPtr x)
{
    return ((FlatPtr)(x)) & ~(PAGE_SIZE - 1);
}

inline FlatPtr virtual_to_low_physical(FlatPtr virtual_)
{
    return virtual_ - physical_to_virtual_offset;
}

enum class UsedMemoryRangeType {
    LowMemory = 0,
    Prekernel,
    Kernel,
    BootModule,
    PhysicalPages,
};

static constexpr StringView UserMemoryRangeTypeNames[] {
    "Low memory",
    "Prekernel",
    "Kernel",
    "Boot module",
    "Physical Pages"
};

struct UsedMemoryRange {
    UsedMemoryRangeType type {};
    PhysicalAddress start;
    PhysicalAddress end;
};

struct ContiguousReservedMemoryRange {
    PhysicalAddress start;
    PhysicalSize length {};
};

enum class PhysicalMemoryRangeType {
    Usable = 0,
    Reserved,
    ACPI_Reclaimable,
    ACPI_NVS,
    BadMemory,
    Unknown,
};

struct PhysicalMemoryRange {
    PhysicalMemoryRangeType type { PhysicalMemoryRangeType::Unknown };
    PhysicalAddress start;
    PhysicalSize length {};
};

#define MM Kernel::MemoryManager::the()

struct MemoryManagerData {
    static ProcessorSpecificDataID processor_specific_data_id() { return ProcessorSpecificDataID::MemoryManager; }

    SpinLock<u8> m_quickmap_in_use;
    u32 m_quickmap_prev_flags;

    PhysicalAddress m_last_quickmap_pd;
    PhysicalAddress m_last_quickmap_pt;
};

extern RecursiveSpinLock s_mm_lock;

// This class represents a set of committed physical pages.
// When you ask MemoryManager to commit pages for you, you get one of these in return.
// You can allocate pages from it via `take_one()`
// It will uncommit any (unallocated) remaining pages when destroyed.
class CommittedPhysicalPageSet {
    AK_MAKE_NONCOPYABLE(CommittedPhysicalPageSet);

public:
    CommittedPhysicalPageSet(Badge<MemoryManager>, size_t page_count)
        : m_page_count(page_count)
    {
    }

    CommittedPhysicalPageSet(CommittedPhysicalPageSet&& other)
        : m_page_count(exchange(other.m_page_count, 0))
    {
    }

    ~CommittedPhysicalPageSet();

    bool is_empty() const { return m_page_count == 0; }
    size_t page_count() const { return m_page_count; }

    [[nodiscard]] NonnullRefPtr<PhysicalPage> take_one();
    void uncommit_one();

    void operator=(CommittedPhysicalPageSet&&) = delete;

private:
    size_t m_page_count { 0 };
};

class MemoryManager {
    AK_MAKE_ETERNAL
    friend class PageDirectory;
    friend class AnonymousVMObject;
    friend class Region;
    friend class VMObject;

public:
    static MemoryManager& the();
    static bool is_initialized();

    static void initialize(u32 cpu);

    static inline MemoryManagerData& get_data()
    {
        return ProcessorSpecific<MemoryManagerData>::get();
    }

    PageFaultResponse handle_page_fault(PageFault const&);

    void set_page_writable_direct(VirtualAddress, bool);

    void protect_readonly_after_init_memory();
    void unmap_text_after_init();
    void unmap_ksyms_after_init();

    static void enter_process_paging_scope(Process&);
    static void enter_space(Space&);

    bool validate_user_stack_no_lock(Space&, VirtualAddress) const;
    bool validate_user_stack(Space&, VirtualAddress) const;

    enum class ShouldZeroFill {
        No,
        Yes
    };

    Optional<CommittedPhysicalPageSet> commit_user_physical_pages(size_t page_count);
    void uncommit_user_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count);

    NonnullRefPtr<PhysicalPage> allocate_committed_user_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill = ShouldZeroFill::Yes);
    RefPtr<PhysicalPage> allocate_user_physical_page(ShouldZeroFill = ShouldZeroFill::Yes, bool* did_purge = nullptr);
    RefPtr<PhysicalPage> allocate_supervisor_physical_page();
    NonnullRefPtrVector<PhysicalPage> allocate_contiguous_supervisor_physical_pages(size_t size);
    void deallocate_physical_page(PhysicalAddress);

    OwnPtr<Region> allocate_contiguous_kernel_region(size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
    OwnPtr<Region> allocate_kernel_region(size_t, StringView name, Region::Access access, AllocationStrategy strategy = AllocationStrategy::Reserve, Region::Cacheable = Region::Cacheable::Yes);
    OwnPtr<Region> allocate_kernel_region(PhysicalAddress, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
    OwnPtr<Region> allocate_kernel_region_identity(PhysicalAddress, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
    OwnPtr<Region> allocate_kernel_region_with_vmobject(VMObject&, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
    OwnPtr<Region> allocate_kernel_region_with_vmobject(Range const&, VMObject&, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);

    struct SystemMemoryInfo {
        PhysicalSize user_physical_pages { 0 };
        PhysicalSize user_physical_pages_used { 0 };
        PhysicalSize user_physical_pages_committed { 0 };
        PhysicalSize user_physical_pages_uncommitted { 0 };
        PhysicalSize super_physical_pages { 0 };
        PhysicalSize super_physical_pages_used { 0 };
    };

    SystemMemoryInfo get_system_memory_info()
    {
        ScopedSpinLock lock(s_mm_lock);
        return m_system_memory_info;
    }

    template<IteratorFunction<VMObject&> Callback>
    static void for_each_vmobject(Callback callback)
    {
        ScopedSpinLock locker(s_mm_lock);
        for (auto& vmobject : MM.m_vmobjects) {
            if (callback(vmobject) == IterationDecision::Break)
                break;
        }
    }

    template<VoidFunction<VMObject&> Callback>
    static void for_each_vmobject(Callback callback)
    {
        for (auto& vmobject : MM.m_vmobjects)
            callback(vmobject);
    }

    static Region* find_user_region_from_vaddr(Space&, VirtualAddress);
    static Region* find_user_region_from_vaddr_no_lock(Space&, VirtualAddress);
    static void validate_syscall_preconditions(Space&, RegisterState const&);

    void dump_kernel_regions();

    PhysicalPage& shared_zero_page() { return *m_shared_zero_page; }
    PhysicalPage& lazy_committed_page() { return *m_lazy_committed_page; }

    PageDirectory& kernel_page_directory() { return *m_kernel_page_directory; }

    Vector<UsedMemoryRange> const& used_memory_ranges() { return m_used_memory_ranges; }
    bool is_allowed_to_mmap_to_userspace(PhysicalAddress, Range const&) const;

    PhysicalPageEntry& get_physical_page_entry(PhysicalAddress);
    PhysicalAddress get_physical_address(PhysicalPage const&);

private:
    MemoryManager();
    ~MemoryManager();

    void initialize_physical_pages();
    void register_reserved_ranges();

    void register_vmobject(VMObject&);
    void unregister_vmobject(VMObject&);
    void register_region(Region&);
    void unregister_region(Region&);

    void protect_kernel_image();
    void parse_memory_map();
    static void flush_tlb_local(VirtualAddress, size_t page_count = 1);
    static void flush_tlb(PageDirectory const*, VirtualAddress, size_t page_count = 1);

    static Region* kernel_region_from_vaddr(VirtualAddress);

    static Region* find_region_from_vaddr(VirtualAddress);

    RefPtr<PhysicalPage> find_free_user_physical_page(bool);

    ALWAYS_INLINE u8* quickmap_page(PhysicalPage& page)
    {
        return quickmap_page(page.paddr());
    }
    u8* quickmap_page(PhysicalAddress const&);
    void unquickmap_page();

    PageDirectoryEntry* quickmap_pd(PageDirectory&, size_t pdpt_index);
    PageTableEntry* quickmap_pt(PhysicalAddress);

    PageTableEntry* pte(PageDirectory&, VirtualAddress);
    PageTableEntry* ensure_pte(PageDirectory&, VirtualAddress);
    void release_pte(PageDirectory&, VirtualAddress, bool);

    RefPtr<PageDirectory> m_kernel_page_directory;

    RefPtr<PhysicalPage> m_shared_zero_page;
    RefPtr<PhysicalPage> m_lazy_committed_page;

    SystemMemoryInfo m_system_memory_info;

    NonnullOwnPtrVector<PhysicalRegion> m_user_physical_regions;
    OwnPtr<PhysicalRegion> m_super_physical_region;
    OwnPtr<PhysicalRegion> m_physical_pages_region;
    PhysicalPageEntry* m_physical_page_entries { nullptr };
    size_t m_physical_page_entries_count { 0 };

    Region::ListInMemoryManager m_user_regions;
    Region::ListInMemoryManager m_kernel_regions;
    Vector<UsedMemoryRange> m_used_memory_ranges;
    Vector<PhysicalMemoryRange> m_physical_memory_ranges;
    Vector<ContiguousReservedMemoryRange> m_reserved_memory_ranges;

    VMObject::List m_vmobjects;
};

inline bool is_user_address(VirtualAddress vaddr)
{
    return vaddr.get() < USER_RANGE_CEILING;
}

inline bool is_user_range(VirtualAddress vaddr, size_t size)
{
    if (vaddr.offset(size) < vaddr)
        return false;
    return is_user_address(vaddr) && is_user_address(vaddr.offset(size));
}

inline bool is_user_range(Range const& range)
{
    return is_user_range(range.base(), range.size());
}

inline bool PhysicalPage::is_shared_zero_page() const
{
    return this == &MM.shared_zero_page();
}

inline bool PhysicalPage::is_lazy_committed_page() const
{
    return this == &MM.lazy_committed_page();
}

}