summaryrefslogtreecommitdiff
path: root/Kernel/Memory/AnonymousVMObject.cpp
blob: 4d73523554b862e0d24b7af9bebaaf5c4d93de05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/*
 * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <Kernel/Arch/x86/SmapDisabler.h>
#include <Kernel/Debug.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PhysicalPage.h>
#include <Kernel/Process.h>

namespace Kernel::Memory {

KResultOr<NonnullRefPtr<VMObject>> AnonymousVMObject::try_clone()
{
    // We need to acquire our lock so we copy a sane state
    ScopedSpinLock lock(m_lock);

    if (is_purgeable() && is_volatile()) {
        // If this object is purgeable+volatile, create a new zero-filled purgeable+volatile
        // object, effectively "pre-purging" it in the child process.
        auto maybe_clone = try_create_purgeable_with_size(size(), AllocationStrategy::None);
        if (maybe_clone.is_error())
            return maybe_clone.error();

        auto clone = maybe_clone.release_value();
        clone->m_volatile = true;
        return clone;
    }

    // We're the parent. Since we're about to become COW we need to
    // commit the number of pages that we need to potentially allocate
    // so that the parent is still guaranteed to be able to have all
    // non-volatile memory available.
    size_t new_cow_pages_needed = page_count();

    dbgln_if(COMMIT_DEBUG, "Cloning {:p}, need {} committed cow pages", this, new_cow_pages_needed);

    auto committed_pages = MM.commit_user_physical_pages(new_cow_pages_needed);
    if (!committed_pages.has_value())
        return ENOMEM;

    // Create or replace the committed cow pages. When cloning a previously
    // cloned vmobject, we want to essentially "fork", leaving us and the
    // new clone with one set of shared committed cow pages, and the original
    // one would keep the one it still has. This ensures that the original
    // one and this one, as well as the clone have sufficient resources
    // to cow all pages as needed
    auto new_shared_committed_cow_pages = try_create<SharedCommittedCowPages>(committed_pages.release_value());

    if (!new_shared_committed_cow_pages)
        return ENOMEM;

    auto maybe_clone = adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(*this, new_shared_committed_cow_pages.release_nonnull()));
    if (!maybe_clone)
        return ENOMEM;
    auto clone = maybe_clone.release_nonnull();

    m_shared_committed_cow_pages = move(new_shared_committed_cow_pages);

    // Both original and clone become COW. So create a COW map for ourselves
    // or reset all pages to be copied again if we were previously cloned
    ensure_or_reset_cow_map();

    if (m_unused_committed_pages.has_value() && !m_unused_committed_pages->is_empty()) {
        // The parent vmobject didn't use up all committed pages. When
        // cloning (fork) we will overcommit. For this purpose we drop all
        // lazy-commit references and replace them with shared zero pages.
        for (size_t i = 0; i < page_count(); i++) {
            auto& page = clone->m_physical_pages[i];
            if (page && page->is_lazy_committed_page()) {
                page = MM.shared_zero_page();
            }
        }
    }

    return clone;
}

KResultOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_size(size_t size, AllocationStrategy strategy)
{
    Optional<CommittedPhysicalPageSet> committed_pages;
    if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
        committed_pages = MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE)));
        if (!committed_pages.has_value())
            return ENOMEM;
    }

    return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(size, strategy, move(committed_pages)));
}

KResultOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_physically_contiguous_with_size(size_t size)
{
    auto contiguous_physical_pages = MM.allocate_contiguous_supervisor_physical_pages(size);
    if (contiguous_physical_pages.is_empty())
        return ENOMEM;

    return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(contiguous_physical_pages.span()));
}

KResultOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_purgeable_with_size(size_t size, AllocationStrategy strategy)
{
    Optional<CommittedPhysicalPageSet> committed_pages;
    if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
        committed_pages = MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE)));
        if (!committed_pages.has_value())
            return ENOMEM;
    }

    auto vmobject = adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(size, strategy, move(committed_pages)));
    if (!vmobject)
        return ENOMEM;

    vmobject->m_purgeable = true;
    return vmobject.release_nonnull();
}

KResultOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_physical_pages(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
{
    return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(physical_pages));
}

KResultOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_for_physical_range(PhysicalAddress paddr, size_t size)
{
    if (paddr.offset(size) < paddr) {
        dbgln("Shenanigans! try_create_for_physical_range({}, {}) would wrap around", paddr, size);
        // Since we can't wrap around yet, let's pretend to OOM.
        return ENOMEM;
    }

    return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(paddr, size));
}

AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy, Optional<CommittedPhysicalPageSet> committed_pages)
    : VMObject(size)
    , m_unused_committed_pages(move(committed_pages))
{
    if (strategy == AllocationStrategy::AllocateNow) {
        // Allocate all pages right now. We know we can get all because we committed the amount needed
        for (size_t i = 0; i < page_count(); ++i)
            physical_pages()[i] = m_unused_committed_pages->take_one();
    } else {
        auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page();
        for (size_t i = 0; i < page_count(); ++i)
            physical_pages()[i] = initial_page;
    }
}

AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size)
    : VMObject(size)
{
    VERIFY(paddr.page_base() == paddr);
    for (size_t i = 0; i < page_count(); ++i)
        physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), MayReturnToFreeList::No);
}

AnonymousVMObject::AnonymousVMObject(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
    : VMObject(physical_pages.size() * PAGE_SIZE)
{
    for (size_t i = 0; i < physical_pages.size(); ++i) {
        m_physical_pages[i] = physical_pages[i];
    }
}

AnonymousVMObject::AnonymousVMObject(AnonymousVMObject const& other, NonnullRefPtr<SharedCommittedCowPages> shared_committed_cow_pages)
    : VMObject(other)
    , m_shared_committed_cow_pages(move(shared_committed_cow_pages))
    , m_purgeable(other.m_purgeable)
{
    ensure_cow_map();
}

AnonymousVMObject::~AnonymousVMObject()
{
}

size_t AnonymousVMObject::purge()
{
    ScopedSpinLock lock(m_lock);

    if (!is_purgeable() || !is_volatile())
        return 0;

    size_t total_pages_purged = 0;

    for (auto& page : m_physical_pages) {
        VERIFY(page);
        if (page->is_shared_zero_page())
            continue;
        page = MM.shared_zero_page();
        ++total_pages_purged;
    }

    m_was_purged = true;

    for_each_region([](Region& region) {
        region.remap();
    });

    return total_pages_purged;
}

KResult AnonymousVMObject::set_volatile(bool is_volatile, bool& was_purged)
{
    VERIFY(is_purgeable());

    ScopedSpinLock locker(m_lock);

    was_purged = m_was_purged;
    if (m_volatile == is_volatile)
        return KSuccess;

    if (is_volatile) {
        // When a VMObject is made volatile, it gives up all of its committed memory.
        // Any physical pages already allocated remain in the VMObject for now, but the kernel is free to take them at any moment.
        for (auto& page : m_physical_pages) {
            if (page && page->is_lazy_committed_page())
                page = MM.shared_zero_page();
        }

        m_unused_committed_pages = {};
        m_shared_committed_cow_pages = nullptr;

        if (!m_cow_map.is_null())
            m_cow_map = {};

        m_volatile = true;
        m_was_purged = false;

        for_each_region([&](auto& region) { region.remap(); });
        return KSuccess;
    }
    // When a VMObject is made non-volatile, we try to commit however many pages are not currently available.
    // If that fails, we return false to indicate that memory allocation failed.
    size_t committed_pages_needed = 0;
    for (auto& page : m_physical_pages) {
        VERIFY(page);
        if (page->is_shared_zero_page())
            ++committed_pages_needed;
    }

    if (!committed_pages_needed) {
        m_volatile = false;
        return KSuccess;
    }

    m_unused_committed_pages = MM.commit_user_physical_pages(committed_pages_needed);
    if (!m_unused_committed_pages.has_value())
        return ENOMEM;

    for (auto& page : m_physical_pages) {
        if (page->is_shared_zero_page())
            page = MM.lazy_committed_page();
    }

    m_volatile = false;
    m_was_purged = false;
    for_each_region([&](auto& region) { region.remap(); });
    return KSuccess;
}

NonnullRefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(Badge<Region>)
{
    return m_unused_committed_pages->take_one();
}

Bitmap& AnonymousVMObject::ensure_cow_map()
{
    if (m_cow_map.is_null())
        m_cow_map = Bitmap { page_count(), true };
    return m_cow_map;
}

void AnonymousVMObject::ensure_or_reset_cow_map()
{
    if (m_cow_map.is_null())
        ensure_cow_map();
    else
        m_cow_map.fill(true);
}

bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const
{
    auto& page = physical_pages()[page_index];
    if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page()))
        return true;
    if (is_shared)
        return false;
    return !m_cow_map.is_null() && m_cow_map.get(page_index);
}

void AnonymousVMObject::set_should_cow(size_t page_index, bool cow)
{
    ensure_cow_map().set(page_index, cow);
}

size_t AnonymousVMObject::cow_pages() const
{
    if (m_cow_map.is_null())
        return 0;
    return m_cow_map.count_slow(true);
}

PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
{
    VERIFY_INTERRUPTS_DISABLED();
    ScopedSpinLock lock(m_lock);

    if (is_volatile()) {
        // A COW fault in a volatile region? Userspace is writing to volatile memory, this is a bug. Crash.
        dbgln("COW fault in volatile region, will crash.");
        return PageFaultResponse::ShouldCrash;
    }

    auto& page_slot = physical_pages()[page_index];

    // If we were sharing committed COW pages with another process, and the other process
    // has exhausted the supply, we can stop counting the shared pages.
    if (m_shared_committed_cow_pages && m_shared_committed_cow_pages->is_empty())
        m_shared_committed_cow_pages = nullptr;

    if (page_slot->ref_count() == 1) {
        dbgln_if(PAGE_FAULT_DEBUG, "    >> It's a COW page but nobody is sharing it anymore. Remap r/w");
        set_should_cow(page_index, false);

        if (m_shared_committed_cow_pages) {
            m_shared_committed_cow_pages->uncommit_one();
            if (m_shared_committed_cow_pages->is_empty())
                m_shared_committed_cow_pages = nullptr;
        }
        return PageFaultResponse::Continue;
    }

    RefPtr<PhysicalPage> page;
    if (m_shared_committed_cow_pages) {
        dbgln_if(PAGE_FAULT_DEBUG, "    >> It's a committed COW page and it's time to COW!");
        page = m_shared_committed_cow_pages->take_one();
    } else {
        dbgln_if(PAGE_FAULT_DEBUG, "    >> It's a COW page and it's time to COW!");
        page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
        if (page.is_null()) {
            dmesgln("MM: handle_cow_fault was unable to allocate a physical page");
            return PageFaultResponse::OutOfMemory;
        }
    }

    u8* dest_ptr = MM.quickmap_page(*page);
    dbgln_if(PAGE_FAULT_DEBUG, "      >> COW {} <- {}", page->paddr(), page_slot->paddr());
    {
        SmapDisabler disabler;
        void* fault_at;
        if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) {
            if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
                dbgln("      >> COW: error copying page {}/{} to {}/{}: failed to write to page at {}",
                    page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
            else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE)
                dbgln("      >> COW: error copying page {}/{} to {}/{}: failed to read from page at {}",
                    page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
            else
                VERIFY_NOT_REACHED();
        }
    }
    page_slot = move(page);
    MM.unquickmap_page();
    set_should_cow(page_index, false);
    return PageFaultResponse::Continue;
}

AnonymousVMObject::SharedCommittedCowPages::SharedCommittedCowPages(CommittedPhysicalPageSet&& committed_pages)
    : m_committed_pages(move(committed_pages))
{
}

AnonymousVMObject::SharedCommittedCowPages::~SharedCommittedCowPages()
{
}

NonnullRefPtr<PhysicalPage> AnonymousVMObject::SharedCommittedCowPages::take_one()
{
    ScopedSpinLock locker(m_lock);
    return m_committed_pages.take_one();
}

void AnonymousVMObject::SharedCommittedCowPages::uncommit_one()
{
    ScopedSpinLock locker(m_lock);
    m_committed_pages.uncommit_one();
}

}