1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Locking/Spinlock.h>
#include <Kernel/Memory/AddressSpace.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/InodeVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
namespace Kernel::Memory {
ErrorOr<NonnullOwnPtr<AddressSpace>> AddressSpace::try_create(AddressSpace const* parent)
{
auto page_directory = TRY(PageDirectory::try_create_for_userspace(parent ? &parent->page_directory().range_allocator() : nullptr));
auto space = TRY(adopt_nonnull_own_or_enomem(new (nothrow) AddressSpace(page_directory)));
space->page_directory().set_space({}, *space);
return space;
}
AddressSpace::AddressSpace(NonnullRefPtr<PageDirectory> page_directory)
: m_page_directory(move(page_directory))
{
}
AddressSpace::~AddressSpace() = default;
ErrorOr<void> AddressSpace::unmap_mmap_range(VirtualAddress addr, size_t size)
{
if (!size)
return EINVAL;
auto range_to_unmap = TRY(VirtualRange::expand_to_page_boundaries(addr.get(), size));
if (!is_user_range(range_to_unmap))
return EFAULT;
if (auto* whole_region = find_region_from_range(range_to_unmap)) {
if (!whole_region->is_mmap())
return EPERM;
PerformanceManager::add_unmap_perf_event(Process::current(), whole_region->range());
deallocate_region(*whole_region);
return {};
}
if (auto* old_region = find_region_containing(range_to_unmap)) {
if (!old_region->is_mmap())
return EPERM;
// Remove the old region from our regions tree, since were going to add another region
// with the exact same start address, but don't deallocate it yet.
auto region = take_region(*old_region);
// We manually unmap the old region here, specifying that we *don't* want the VM deallocated.
region->unmap(Region::ShouldDeallocateVirtualRange::No);
auto new_regions = TRY(try_split_region_around_range(*region, range_to_unmap));
// Instead we give back the unwanted VM manually.
page_directory().range_allocator().deallocate(range_to_unmap);
// And finally we map the new region(s) using our page directory (they were just allocated and don't have one).
for (auto* new_region : new_regions) {
// TODO: Ideally we should do this in a way that can be rolled back on failure, as failing here
// leaves the caller in an undefined state.
TRY(new_region->map(page_directory()));
}
PerformanceManager::add_unmap_perf_event(Process::current(), range_to_unmap);
return {};
}
// Try again while checking multiple regions at a time.
auto const& regions = TRY(find_regions_intersecting(range_to_unmap));
if (regions.is_empty())
return {};
// Check if any of the regions is not mmap'ed, to not accidentally
// error out with just half a region map left.
for (auto* region : regions) {
if (!region->is_mmap())
return EPERM;
}
Vector<Region*, 2> new_regions;
for (auto* old_region : regions) {
// If it's a full match we can remove the entire old region.
if (old_region->range().intersect(range_to_unmap).size() == old_region->size()) {
deallocate_region(*old_region);
continue;
}
// Remove the old region from our regions tree, since were going to add another region
// with the exact same start address, but don't deallocate it yet.
auto region = take_region(*old_region);
// We manually unmap the old region here, specifying that we *don't* want the VM deallocated.
region->unmap(Region::ShouldDeallocateVirtualRange::No);
// Otherwise, split the regions and collect them for future mapping.
auto split_regions = TRY(try_split_region_around_range(*region, range_to_unmap));
TRY(new_regions.try_extend(split_regions));
}
// Give back any unwanted VM to the range allocator.
page_directory().range_allocator().deallocate(range_to_unmap);
// And finally map the new region(s) into our page directory.
for (auto* new_region : new_regions) {
// TODO: Ideally we should do this in a way that can be rolled back on failure, as failing here
// leaves the caller in an undefined state.
TRY(new_region->map(page_directory()));
}
PerformanceManager::add_unmap_perf_event(Process::current(), range_to_unmap);
return {};
}
ErrorOr<VirtualRange> AddressSpace::try_allocate_range(VirtualAddress vaddr, size_t size, size_t alignment)
{
vaddr.mask(PAGE_MASK);
size = TRY(page_round_up(size));
if (vaddr.is_null())
return page_directory().range_allocator().try_allocate_anywhere(size, alignment);
return page_directory().range_allocator().try_allocate_specific(vaddr, size);
}
ErrorOr<Region*> AddressSpace::try_allocate_split_region(Region const& source_region, VirtualRange const& range, size_t offset_in_vmobject)
{
OwnPtr<KString> region_name;
if (!source_region.name().is_null())
region_name = TRY(KString::try_create(source_region.name()));
auto new_region = TRY(Region::try_create_user_accessible(
range, source_region.vmobject(), offset_in_vmobject, move(region_name), source_region.access(), source_region.is_cacheable() ? Region::Cacheable::Yes : Region::Cacheable::No, source_region.is_shared()));
new_region->set_syscall_region(source_region.is_syscall_region());
new_region->set_mmap(source_region.is_mmap());
new_region->set_stack(source_region.is_stack());
size_t page_offset_in_source_region = (offset_in_vmobject - source_region.offset_in_vmobject()) / PAGE_SIZE;
for (size_t i = 0; i < new_region->page_count(); ++i) {
if (source_region.should_cow(page_offset_in_source_region + i))
TRY(new_region->set_should_cow(i, true));
}
return add_region(move(new_region));
}
ErrorOr<Region*> AddressSpace::allocate_region(VirtualRange const& range, StringView name, int prot, AllocationStrategy strategy)
{
VERIFY(range.is_valid());
OwnPtr<KString> region_name;
if (!name.is_null())
region_name = TRY(KString::try_create(name));
auto vmobject = TRY(AnonymousVMObject::try_create_with_size(range.size(), strategy));
auto region = TRY(Region::try_create_user_accessible(range, move(vmobject), 0, move(region_name), prot_to_region_access_flags(prot), Region::Cacheable::Yes, false));
TRY(region->map(page_directory(), ShouldFlushTLB::No));
return add_region(move(region));
}
ErrorOr<Region*> AddressSpace::allocate_region_with_vmobject(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, StringView name, int prot, bool shared)
{
VERIFY(range.is_valid());
size_t end_in_vmobject = offset_in_vmobject + range.size();
if (end_in_vmobject <= offset_in_vmobject) {
dbgln("allocate_region_with_vmobject: Overflow (offset + size)");
return EINVAL;
}
if (offset_in_vmobject >= vmobject->size()) {
dbgln("allocate_region_with_vmobject: Attempt to allocate a region with an offset past the end of its VMObject.");
return EINVAL;
}
if (end_in_vmobject > vmobject->size()) {
dbgln("allocate_region_with_vmobject: Attempt to allocate a region with an end past the end of its VMObject.");
return EINVAL;
}
offset_in_vmobject &= PAGE_MASK;
OwnPtr<KString> region_name;
if (!name.is_null())
region_name = TRY(KString::try_create(name));
auto region = TRY(Region::try_create_user_accessible(range, move(vmobject), offset_in_vmobject, move(region_name), prot_to_region_access_flags(prot), Region::Cacheable::Yes, shared));
if (prot == PROT_NONE) {
// For PROT_NONE mappings, we don't have to set up any page table mappings.
// We do still need to attach the region to the page_directory though.
SpinlockLocker mm_locker(s_mm_lock);
region->set_page_directory(page_directory());
} else {
TRY(region->map(page_directory(), ShouldFlushTLB::No));
}
return add_region(move(region));
}
void AddressSpace::deallocate_region(Region& region)
{
(void)take_region(region);
}
NonnullOwnPtr<Region> AddressSpace::take_region(Region& region)
{
SpinlockLocker lock(m_lock);
auto found_region = m_regions.unsafe_remove(region.vaddr().get());
VERIFY(found_region.ptr() == ®ion);
return found_region;
}
Region* AddressSpace::find_region_from_range(VirtualRange const& range)
{
SpinlockLocker lock(m_lock);
auto* found_region = m_regions.find(range.base().get());
if (!found_region)
return nullptr;
auto& region = *found_region;
auto rounded_range_size = page_round_up(range.size());
if (rounded_range_size.is_error() || region->size() != rounded_range_size.value())
return nullptr;
return region;
}
Region* AddressSpace::find_region_containing(VirtualRange const& range)
{
SpinlockLocker lock(m_lock);
auto* candidate = m_regions.find_largest_not_above(range.base().get());
if (!candidate)
return nullptr;
return (*candidate)->range().contains(range) ? candidate->ptr() : nullptr;
}
ErrorOr<Vector<Region*>> AddressSpace::find_regions_intersecting(VirtualRange const& range)
{
Vector<Region*> regions = {};
size_t total_size_collected = 0;
SpinlockLocker lock(m_lock);
auto* found_region = m_regions.find_largest_not_above(range.base().get());
if (!found_region)
return regions;
for (auto iter = m_regions.begin_from((*found_region)->vaddr().get()); !iter.is_end(); ++iter) {
const auto& iter_range = (*iter)->range();
if (iter_range.base() < range.end() && iter_range.end() > range.base()) {
TRY(regions.try_append(*iter));
total_size_collected += (*iter)->size() - iter_range.intersect(range).size();
if (total_size_collected == range.size())
break;
}
}
return regions;
}
ErrorOr<Region*> AddressSpace::add_region(NonnullOwnPtr<Region> region)
{
auto* ptr = region.ptr();
SpinlockLocker lock(m_lock);
TRY(m_regions.try_insert(region->vaddr().get(), move(region)));
return ptr;
}
// Carve out a virtual address range from a region and return the two regions on either side
ErrorOr<Vector<Region*, 2>> AddressSpace::try_split_region_around_range(const Region& source_region, VirtualRange const& desired_range)
{
VirtualRange old_region_range = source_region.range();
auto remaining_ranges_after_unmap = old_region_range.carve(desired_range);
VERIFY(!remaining_ranges_after_unmap.is_empty());
auto try_make_replacement_region = [&](VirtualRange const& new_range) -> ErrorOr<Region*> {
VERIFY(old_region_range.contains(new_range));
size_t new_range_offset_in_vmobject = source_region.offset_in_vmobject() + (new_range.base().get() - old_region_range.base().get());
return try_allocate_split_region(source_region, new_range, new_range_offset_in_vmobject);
};
Vector<Region*, 2> new_regions;
for (auto& new_range : remaining_ranges_after_unmap) {
auto* new_region = TRY(try_make_replacement_region(new_range));
new_regions.unchecked_append(new_region);
}
return new_regions;
}
void AddressSpace::dump_regions()
{
dbgln("Process regions:");
#if ARCH(I386)
char const* addr_padding = "";
#else
char const* addr_padding = " ";
#endif
dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
addr_padding, addr_padding, addr_padding);
SpinlockLocker lock(m_lock);
for (auto const& sorted_region : m_regions) {
auto const& region = *sorted_region;
dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}", region.vaddr().get(), region.vaddr().offset(region.size() - 1).get(), region.size(),
region.is_readable() ? 'R' : ' ',
region.is_writable() ? 'W' : ' ',
region.is_executable() ? 'X' : ' ',
region.is_shared() ? 'S' : ' ',
region.is_stack() ? 'T' : ' ',
region.is_syscall_region() ? 'C' : ' ',
region.name());
}
MM.dump_kernel_regions();
}
void AddressSpace::remove_all_regions(Badge<Process>)
{
VERIFY(Thread::current() == g_finalizer);
SpinlockLocker locker(m_lock);
{
SpinlockLocker pd_locker(m_page_directory->get_lock());
SpinlockLocker mm_locker(s_mm_lock);
for (auto& region : m_regions)
(*region).unmap_with_locks_held(Region::ShouldDeallocateVirtualRange::No, ShouldFlushTLB::No, pd_locker, mm_locker);
}
m_regions.clear();
}
size_t AddressSpace::amount_dirty_private() const
{
SpinlockLocker lock(m_lock);
// FIXME: This gets a bit more complicated for Regions sharing the same underlying VMObject.
// The main issue I'm thinking of is when the VMObject has physical pages that none of the Regions are mapping.
// That's probably a situation that needs to be looked at in general.
size_t amount = 0;
for (auto const& region : m_regions) {
if (!region->is_shared())
amount += region->amount_dirty();
}
return amount;
}
ErrorOr<size_t> AddressSpace::amount_clean_inode() const
{
SpinlockLocker lock(m_lock);
HashTable<const InodeVMObject*> vmobjects;
for (auto const& region : m_regions) {
if (region->vmobject().is_inode())
TRY(vmobjects.try_set(&static_cast<const InodeVMObject&>(region->vmobject())));
}
size_t amount = 0;
for (auto& vmobject : vmobjects)
amount += vmobject->amount_clean();
return amount;
}
size_t AddressSpace::amount_virtual() const
{
SpinlockLocker lock(m_lock);
size_t amount = 0;
for (auto const& region : m_regions) {
amount += region->size();
}
return amount;
}
size_t AddressSpace::amount_resident() const
{
SpinlockLocker lock(m_lock);
// FIXME: This will double count if multiple regions use the same physical page.
size_t amount = 0;
for (auto const& region : m_regions) {
amount += region->amount_resident();
}
return amount;
}
size_t AddressSpace::amount_shared() const
{
SpinlockLocker lock(m_lock);
// FIXME: This will double count if multiple regions use the same physical page.
// FIXME: It doesn't work at the moment, since it relies on PhysicalPage ref counts,
// and each PhysicalPage is only reffed by its VMObject. This needs to be refactored
// so that every Region contributes +1 ref to each of its PhysicalPages.
size_t amount = 0;
for (auto const& region : m_regions) {
amount += region->amount_shared();
}
return amount;
}
size_t AddressSpace::amount_purgeable_volatile() const
{
SpinlockLocker lock(m_lock);
size_t amount = 0;
for (auto const& region : m_regions) {
if (!region->vmobject().is_anonymous())
continue;
auto const& vmobject = static_cast<AnonymousVMObject const&>(region->vmobject());
if (vmobject.is_purgeable() && vmobject.is_volatile())
amount += region->amount_resident();
}
return amount;
}
size_t AddressSpace::amount_purgeable_nonvolatile() const
{
SpinlockLocker lock(m_lock);
size_t amount = 0;
for (auto const& region : m_regions) {
if (!region->vmobject().is_anonymous())
continue;
auto const& vmobject = static_cast<AnonymousVMObject const&>(region->vmobject());
if (vmobject.is_purgeable() && !vmobject.is_volatile())
amount += region->amount_resident();
}
return amount;
}
}
|