summaryrefslogtreecommitdiff
path: root/Kernel/Locking/Spinlock.h
blob: 7e8f83708af8003cee2929073251d20d3ac64d5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*
 * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Atomic.h>
#include <AK/Types.h>
#include <Kernel/Arch/Processor.h>
#include <Kernel/Locking/LockRank.h>

namespace Kernel {

class Spinlock {
    AK_MAKE_NONCOPYABLE(Spinlock);
    AK_MAKE_NONMOVABLE(Spinlock);

public:
    Spinlock(LockRank rank = LockRank::None)
        : m_rank(rank)
    {
    }

    ALWAYS_INLINE u32 lock()
    {
        u32 prev_flags = cpu_flags();
        Processor::enter_critical();
        cli();
        while (m_lock.exchange(1, AK::memory_order_acquire) != 0) {
            Processor::wait_check();
        }
        track_lock_acquire(m_rank);
        return prev_flags;
    }

    ALWAYS_INLINE void unlock(u32 prev_flags)
    {
        VERIFY(is_locked());
        track_lock_release(m_rank);
        m_lock.store(0, AK::memory_order_release);
        if (prev_flags & 0x200)
            sti();
        else
            cli();

        Processor::leave_critical();
    }

    [[nodiscard]] ALWAYS_INLINE bool is_locked() const
    {
        return m_lock.load(AK::memory_order_relaxed) != 0;
    }

    ALWAYS_INLINE void initialize()
    {
        m_lock.store(0, AK::memory_order_relaxed);
    }

private:
    Atomic<u8> m_lock { 0 };
    const LockRank m_rank;
};

class RecursiveSpinlock {
    AK_MAKE_NONCOPYABLE(RecursiveSpinlock);
    AK_MAKE_NONMOVABLE(RecursiveSpinlock);

public:
    RecursiveSpinlock(LockRank rank = LockRank::None)
        : m_rank(rank)
    {
    }

    ALWAYS_INLINE u32 lock()
    {
        u32 prev_flags = cpu_flags();
        cli();
        Processor::enter_critical();
        auto& proc = Processor::current();
        FlatPtr cpu = FlatPtr(&proc);
        FlatPtr expected = 0;
        while (!m_lock.compare_exchange_strong(expected, cpu, AK::memory_order_acq_rel)) {
            if (expected == cpu)
                break;
            Processor::wait_check();
            expected = 0;
        }
        if (m_recursions == 0)
            track_lock_acquire(m_rank);
        m_recursions++;
        return prev_flags;
    }

    ALWAYS_INLINE void unlock(u32 prev_flags)
    {
        VERIFY(m_recursions > 0);
        VERIFY(m_lock.load(AK::memory_order_relaxed) == FlatPtr(&Processor::current()));
        if (--m_recursions == 0) {
            track_lock_release(m_rank);
            m_lock.store(0, AK::memory_order_release);
        }
        if (prev_flags & 0x200)
            sti();
        else
            cli();

        Processor::leave_critical();
    }

    [[nodiscard]] ALWAYS_INLINE bool is_locked() const
    {
        return m_lock.load(AK::memory_order_relaxed) != 0;
    }

    [[nodiscard]] ALWAYS_INLINE bool is_locked_by_current_processor() const
    {
        return m_lock.load(AK::memory_order_relaxed) == FlatPtr(&Processor::current());
    }

    ALWAYS_INLINE void initialize()
    {
        m_lock.store(0, AK::memory_order_relaxed);
    }

private:
    Atomic<FlatPtr> m_lock { 0 };
    u32 m_recursions { 0 };
    const LockRank m_rank;
};

template<typename LockType>
class [[nodiscard]] SpinlockLocker {
    AK_MAKE_NONCOPYABLE(SpinlockLocker);

public:
    SpinlockLocker() = delete;
    SpinlockLocker& operator=(SpinlockLocker&&) = delete;

    SpinlockLocker(LockType& lock)
        : m_lock(&lock)
    {
        VERIFY(m_lock);
        m_prev_flags = m_lock->lock();
        m_have_lock = true;
    }

    SpinlockLocker(SpinlockLocker&& from)
        : m_lock(from.m_lock)
        , m_prev_flags(from.m_prev_flags)
        , m_have_lock(from.m_have_lock)
    {
        from.m_lock = nullptr;
        from.m_prev_flags = 0;
        from.m_have_lock = false;
    }

    ~SpinlockLocker()
    {
        if (m_lock && m_have_lock) {
            m_lock->unlock(m_prev_flags);
        }
    }

    ALWAYS_INLINE void lock()
    {
        VERIFY(m_lock);
        VERIFY(!m_have_lock);
        m_prev_flags = m_lock->lock();
        m_have_lock = true;
    }

    ALWAYS_INLINE void unlock()
    {
        VERIFY(m_lock);
        VERIFY(m_have_lock);
        m_lock->unlock(m_prev_flags);
        m_prev_flags = 0;
        m_have_lock = false;
    }

    [[nodiscard]] ALWAYS_INLINE bool have_lock() const
    {
        return m_have_lock;
    }

private:
    LockType* m_lock { nullptr };
    u32 m_prev_flags { 0 };
    bool m_have_lock { false };
};

}