1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Assertions.h>
#include <AK/Memory.h>
#include <AK/Singleton.h>
#include <AK/Types.h>
#include <Kernel/Arch/x86/IO.h>
#include <Kernel/Arch/x86/MSR.h>
#include <Kernel/Arch/x86/ProcessorInfo.h>
#include <Kernel/Debug.h>
#include <Kernel/Firmware/ACPI/Parser.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Interrupts/SpuriousInterruptHandler.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PageDirectory.h>
#include <Kernel/Memory/TypedMapping.h>
#include <Kernel/Panic.h>
#include <Kernel/Sections.h>
#include <Kernel/Thread.h>
#include <Kernel/Time/APICTimer.h>
#define IRQ_APIC_TIMER (0xfc - IRQ_VECTOR_BASE)
#define IRQ_APIC_IPI (0xfd - IRQ_VECTOR_BASE)
#define IRQ_APIC_ERR (0xfe - IRQ_VECTOR_BASE)
#define IRQ_APIC_SPURIOUS (0xff - IRQ_VECTOR_BASE)
#define APIC_ICR_DELIVERY_PENDING (1 << 12)
#define APIC_ENABLED (1 << 8)
#define APIC_BASE_MSR 0x1b
#define APIC_REGS_MSR_BASE 0x800
#define APIC_REG_ID 0x20
#define APIC_REG_EOI 0xb0
#define APIC_REG_LD 0xd0
#define APIC_REG_DF 0xe0
#define APIC_REG_SIV 0xf0
#define APIC_REG_TPR 0x80
#define APIC_REG_ICR_LOW 0x300
#define APIC_REG_ICR_HIGH 0x310
#define APIC_REG_LVT_TIMER 0x320
#define APIC_REG_LVT_THERMAL 0x330
#define APIC_REG_LVT_PERFORMANCE_COUNTER 0x340
#define APIC_REG_LVT_LINT0 0x350
#define APIC_REG_LVT_LINT1 0x360
#define APIC_REG_LVT_ERR 0x370
#define APIC_REG_TIMER_INITIAL_COUNT 0x380
#define APIC_REG_TIMER_CURRENT_COUNT 0x390
#define APIC_REG_TIMER_CONFIGURATION 0x3e0
namespace Kernel {
static Singleton<APIC> s_apic;
class APICIPIInterruptHandler final : public GenericInterruptHandler {
public:
explicit APICIPIInterruptHandler(u8 interrupt_vector)
: GenericInterruptHandler(interrupt_vector, true)
{
}
virtual ~APICIPIInterruptHandler()
{
}
static void initialize(u8 interrupt_number)
{
auto* handler = new APICIPIInterruptHandler(interrupt_number);
handler->register_interrupt_handler();
}
virtual bool handle_interrupt(const RegisterState&) override;
virtual bool eoi() override;
virtual HandlerType type() const override { return HandlerType::IRQHandler; }
virtual StringView purpose() const override { return "IPI Handler"sv; }
virtual StringView controller() const override { return nullptr; }
virtual size_t sharing_devices_count() const override { return 0; }
virtual bool is_shared_handler() const override { return false; }
virtual bool is_sharing_with_others() const override { return false; }
private:
};
class APICErrInterruptHandler final : public GenericInterruptHandler {
public:
explicit APICErrInterruptHandler(u8 interrupt_vector)
: GenericInterruptHandler(interrupt_vector, true)
{
}
virtual ~APICErrInterruptHandler()
{
}
static void initialize(u8 interrupt_number)
{
auto* handler = new APICErrInterruptHandler(interrupt_number);
handler->register_interrupt_handler();
}
virtual bool handle_interrupt(const RegisterState&) override;
virtual bool eoi() override;
virtual HandlerType type() const override { return HandlerType::IRQHandler; }
virtual StringView purpose() const override { return "SMP Error Handler"sv; }
virtual StringView controller() const override { return nullptr; }
virtual size_t sharing_devices_count() const override { return 0; }
virtual bool is_shared_handler() const override { return false; }
virtual bool is_sharing_with_others() const override { return false; }
private:
};
bool APIC::initialized()
{
return s_apic.is_initialized();
}
APIC& APIC::the()
{
VERIFY(APIC::initialized());
return *s_apic;
}
UNMAP_AFTER_INIT void APIC::initialize()
{
VERIFY(!APIC::initialized());
s_apic.ensure_instance();
}
PhysicalAddress APIC::get_base()
{
MSR msr(APIC_BASE_MSR);
auto base = msr.get();
return PhysicalAddress(base & 0xfffff000);
}
void APIC::set_base(const PhysicalAddress& base)
{
MSR msr(APIC_BASE_MSR);
u64 flags = 1 << 11;
if (m_is_x2)
flags |= 1 << 10;
msr.set(base.get() | flags);
}
void APIC::write_register(u32 offset, u32 value)
{
if (m_is_x2) {
MSR msr(APIC_REGS_MSR_BASE + (offset >> 4));
msr.set(value);
} else {
*reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr()) = value;
}
}
u32 APIC::read_register(u32 offset)
{
if (m_is_x2) {
MSR msr(APIC_REGS_MSR_BASE + (offset >> 4));
return (u32)msr.get();
}
return *reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr());
}
void APIC::set_lvt(u32 offset, u8 interrupt)
{
write_register(offset, read_register(offset) | interrupt);
}
void APIC::set_siv(u32 offset, u8 interrupt)
{
write_register(offset, read_register(offset) | interrupt | APIC_ENABLED);
}
void APIC::wait_for_pending_icr()
{
while ((read_register(APIC_REG_ICR_LOW) & APIC_ICR_DELIVERY_PENDING) != 0) {
IO::delay(200);
}
}
void APIC::write_icr(const ICRReg& icr)
{
if (m_is_x2) {
MSR msr(APIC_REGS_MSR_BASE + (APIC_REG_ICR_LOW >> 4));
msr.set(icr.x2_value());
} else {
write_register(APIC_REG_ICR_HIGH, icr.x_high());
write_register(APIC_REG_ICR_LOW, icr.x_low());
}
}
#define APIC_LVT_TIMER_ONESHOT 0
#define APIC_LVT_TIMER_PERIODIC (1 << 17)
#define APIC_LVT_TIMER_TSCDEADLINE (1 << 18)
#define APIC_LVT_MASKED (1 << 16)
#define APIC_LVT_TRIGGER_LEVEL (1 << 14)
#define APIC_LVT(iv, dm) (((iv)&0xff) | (((dm)&0x7) << 8))
extern "C" void apic_ap_start(void);
extern "C" u16 apic_ap_start_size;
extern "C" u32 ap_cpu_init_stacks;
extern "C" u32 ap_cpu_init_processor_info_array;
extern "C" u32 ap_cpu_init_cr0;
extern "C" u32 ap_cpu_init_cr3;
extern "C" u32 ap_cpu_init_cr4;
extern "C" u32 ap_cpu_gdtr;
extern "C" u32 ap_cpu_idtr;
void APIC::eoi()
{
write_register(APIC_REG_EOI, 0x0);
}
u8 APIC::spurious_interrupt_vector()
{
return IRQ_APIC_SPURIOUS;
}
#define APIC_INIT_VAR_PTR(tpe, vaddr, varname) \
reinterpret_cast<volatile tpe*>(reinterpret_cast<ptrdiff_t>(vaddr) \
+ reinterpret_cast<ptrdiff_t>(&varname) \
- reinterpret_cast<ptrdiff_t>(&apic_ap_start))
UNMAP_AFTER_INIT bool APIC::init_bsp()
{
// FIXME: Use the ACPI MADT table
if (!MSR::have())
return false;
// check if we support local apic
CPUID id(1);
if ((id.edx() & (1 << 9)) == 0)
return false;
if (id.ecx() & (1 << 21))
m_is_x2 = true;
PhysicalAddress apic_base = get_base();
dbgln_if(APIC_DEBUG, "Initializing {}APIC, base: {}", m_is_x2 ? "x2" : "x", apic_base);
set_base(apic_base);
if (!m_is_x2) {
auto region_or_error = MM.allocate_kernel_region(apic_base.page_base(), PAGE_SIZE, {}, Memory::Region::Access::ReadWrite);
if (region_or_error.is_error()) {
dbgln("APIC: Failed to allocate memory for APIC base");
return false;
}
m_apic_base = region_or_error.release_value();
}
auto rsdp = ACPI::StaticParsing::find_rsdp();
if (!rsdp.has_value()) {
dbgln("APIC: RSDP not found");
return false;
}
auto madt_address = ACPI::StaticParsing::find_table(rsdp.value(), "APIC");
if (!madt_address.has_value()) {
dbgln("APIC: MADT table not found");
return false;
}
if (kernel_command_line().is_smp_enabled()) {
auto madt_or_error = Memory::map_typed<ACPI::Structures::MADT>(madt_address.value());
if (madt_or_error.is_error()) {
dbgln("APIC: Failed to map MADT table");
return false;
}
auto madt = madt_or_error.release_value();
size_t entry_index = 0;
size_t entries_length = madt->h.length - sizeof(ACPI::Structures::MADT);
auto* madt_entry = madt->entries;
while (entries_length > 0) {
size_t entry_length = madt_entry->length;
if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::LocalAPIC) {
auto* plapic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalAPIC*)madt_entry;
dbgln_if(APIC_DEBUG, "APIC: AP found @ MADT entry {}, processor ID: {}, xAPIC ID: {}, flags: {:#08x}", entry_index, plapic_entry->acpi_processor_id, plapic_entry->apic_id, plapic_entry->flags);
m_processor_cnt++;
if ((plapic_entry->flags & 0x1) != 0)
m_processor_enabled_cnt++;
} else if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::Local_x2APIC) {
// Only used for APID IDs >= 255
auto* plx2apic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalX2APIC*)madt_entry;
dbgln_if(APIC_DEBUG, "APIC: AP found @ MADT entry {}, processor ID: {}, x2APIC ID: {}, flags: {:#08x}", entry_index, plx2apic_entry->acpi_processor_id, plx2apic_entry->apic_id, plx2apic_entry->flags);
m_processor_cnt++;
if ((plx2apic_entry->flags & 0x1) != 0)
m_processor_enabled_cnt++;
}
madt_entry = (ACPI::Structures::MADTEntryHeader*)(VirtualAddress(madt_entry).offset(entry_length).get());
entries_length -= entry_length;
entry_index++;
}
dbgln("APIC processors found: {}, enabled: {}", m_processor_cnt, m_processor_enabled_cnt);
}
if (m_processor_enabled_cnt < 1)
m_processor_enabled_cnt = 1;
if (m_processor_cnt < 1)
m_processor_cnt = 1;
enable(0);
return true;
}
UNMAP_AFTER_INIT static NonnullOwnPtr<Memory::Region> create_identity_mapped_region(PhysicalAddress paddr, size_t size)
{
auto maybe_vmobject = Memory::AnonymousVMObject::try_create_for_physical_range(paddr, size);
// FIXME: Would be nice to be able to return a ErrorOr from here.
VERIFY(!maybe_vmobject.is_error());
auto region_or_error = MM.allocate_kernel_region_with_vmobject(
Memory::VirtualRange { VirtualAddress { static_cast<FlatPtr>(paddr.get()) }, size },
maybe_vmobject.release_value(),
{},
Memory::Region::Access::ReadWriteExecute);
VERIFY(!region_or_error.is_error());
return region_or_error.release_value();
}
UNMAP_AFTER_INIT void APIC::setup_ap_boot_environment()
{
VERIFY(!m_ap_boot_environment);
VERIFY(m_processor_enabled_cnt > 1);
u32 aps_to_enable = m_processor_enabled_cnt - 1;
// Copy the APIC startup code and variables to P0x00008000
// Also account for the data appended to:
// * aps_to_enable u32 values for ap_cpu_init_stacks
// * aps_to_enable u32 values for ap_cpu_init_processor_info_array
constexpr u64 apic_startup_region_base = 0x8000;
VERIFY(apic_startup_region_base + apic_ap_start_size < USER_RANGE_BASE);
auto apic_startup_region = create_identity_mapped_region(PhysicalAddress(apic_startup_region_base), Memory::page_round_up(apic_ap_start_size + (2 * aps_to_enable * sizeof(u32))).release_value_but_fixme_should_propagate_errors());
memcpy(apic_startup_region->vaddr().as_ptr(), reinterpret_cast<const void*>(apic_ap_start), apic_ap_start_size);
// Allocate enough stacks for all APs
m_ap_temporary_boot_stacks.ensure_capacity(aps_to_enable);
for (u32 i = 0; i < aps_to_enable; i++) {
auto stack_region_or_error = MM.allocate_kernel_region(Thread::default_kernel_stack_size, {}, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow);
if (stack_region_or_error.is_error()) {
dbgln("APIC: Failed to allocate stack for AP #{}", i);
return;
}
auto stack_region = stack_region_or_error.release_value();
stack_region->set_stack(true);
m_ap_temporary_boot_stacks.unchecked_append(move(stack_region));
}
// Store pointers to all stacks for the APs to use
auto* ap_stack_array = APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_stacks);
VERIFY(aps_to_enable == m_ap_temporary_boot_stacks.size());
for (size_t i = 0; i < aps_to_enable; i++) {
ap_stack_array[i] = m_ap_temporary_boot_stacks[i]->vaddr().get() + Thread::default_kernel_stack_size;
dbgln_if(APIC_DEBUG, "APIC: CPU[{}] stack at {}", i + 1, VirtualAddress { ap_stack_array[i] });
}
// Allocate Processor structures for all APs and store the pointer to the data
m_ap_processor_info.resize(aps_to_enable);
for (size_t i = 0; i < aps_to_enable; i++)
m_ap_processor_info[i] = make<Processor>();
auto* ap_processor_info_array = &ap_stack_array[aps_to_enable];
for (size_t i = 0; i < aps_to_enable; i++) {
ap_processor_info_array[i] = FlatPtr(m_ap_processor_info[i].ptr());
dbgln_if(APIC_DEBUG, "APIC: CPU[{}] processor at {}", i + 1, VirtualAddress { ap_processor_info_array[i] });
}
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_processor_info_array) = FlatPtr(&ap_processor_info_array[0]);
// Store the BSP's CR3 value for the APs to use
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr3) = MM.kernel_page_directory().cr3();
// Store the BSP's GDT and IDT for the APs to use
const auto& gdtr = Processor::current().get_gdtr();
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_gdtr) = FlatPtr(&gdtr);
const auto& idtr = get_idtr();
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_idtr) = FlatPtr(&idtr);
// Store the BSP's CR0 and CR4 values for the APs to use
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr0) = read_cr0();
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr4) = read_cr4();
m_ap_boot_environment = move(apic_startup_region);
}
UNMAP_AFTER_INIT void APIC::do_boot_aps()
{
VERIFY(m_ap_boot_environment);
VERIFY(m_processor_enabled_cnt > 1);
u32 aps_to_enable = m_processor_enabled_cnt - 1;
// Create an idle thread for each processor. We have to do this here
// because we won't be able to send FlushTLB messages, so we have to
// have all memory set up for the threads so that when the APs are
// starting up, they can access all the memory properly
m_ap_idle_threads.resize(aps_to_enable);
for (u32 i = 0; i < aps_to_enable; i++)
m_ap_idle_threads[i] = Scheduler::create_ap_idle_thread(i + 1);
dbgln_if(APIC_DEBUG, "APIC: Starting {} AP(s)", aps_to_enable);
// INIT
write_icr({ 0, 0, ICRReg::INIT, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf });
IO::delay(10 * 1000);
for (int i = 0; i < 2; i++) {
// SIPI
write_icr({ 0x08, 0, ICRReg::StartUp, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf }); // start execution at P8000
IO::delay(200);
}
// Now wait until the ap_cpu_init_pending variable dropped to 0, which means all APs are initialized and no longer need these special mappings
if (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable) {
dbgln_if(APIC_DEBUG, "APIC: Waiting for {} AP(s) to finish initialization...", aps_to_enable);
do {
// Wait a little bit
IO::delay(200);
} while (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable);
}
dbgln_if(APIC_DEBUG, "APIC: {} processors are initialized and running", m_processor_enabled_cnt);
// NOTE: Since this region is identity-mapped, we have to unmap it manually to prevent the virtual
// address range from leaking into the general virtual range allocator.
m_ap_boot_environment->unmap(Memory::Region::ShouldDeallocateVirtualRange::No);
m_ap_boot_environment = nullptr;
// When the APs signal that they finished their initialization they have already switched over to their
// idle thread's stack, so the temporary boot stack can be deallocated
m_ap_temporary_boot_stacks.clear();
}
UNMAP_AFTER_INIT void APIC::boot_aps()
{
if (m_processor_enabled_cnt <= 1)
return;
// We split this into another call because do_boot_aps() will cause
// MM calls upon exit, and we don't want to call smp_enable before that
do_boot_aps();
// Enable SMP, which means IPIs may now be sent
Processor::smp_enable();
dbgln_if(APIC_DEBUG, "All processors initialized and waiting, trigger all to continue");
// Now trigger all APs to continue execution (need to do this after
// the regions have been freed so that we don't trigger IPIs
m_apic_ap_continue.store(1, AK::MemoryOrder::memory_order_release);
}
UNMAP_AFTER_INIT void APIC::enable(u32 cpu)
{
VERIFY(m_is_x2 || cpu < 8);
u32 apic_id;
if (m_is_x2) {
dbgln_if(APIC_DEBUG, "Enable x2APIC on CPU #{}", cpu);
// We need to enable x2 mode on each core independently
set_base(get_base());
apic_id = read_register(APIC_REG_ID);
} else {
dbgln_if(APIC_DEBUG, "Setting logical xAPIC ID for CPU #{}", cpu);
// Use the CPU# as logical apic id
VERIFY(cpu <= 8);
write_register(APIC_REG_LD, (read_register(APIC_REG_LD) & 0x00ffffff) | (cpu << 24));
// read it back to make sure it's actually set
apic_id = read_register(APIC_REG_LD) >> 24;
}
dbgln_if(APIC_DEBUG, "CPU #{} apic id: {}", cpu, apic_id);
Processor::current().info().set_apic_id(apic_id);
dbgln_if(APIC_DEBUG, "Enabling local APIC for CPU #{}, logical APIC ID: {}", cpu, apic_id);
if (cpu == 0) {
SpuriousInterruptHandler::initialize(IRQ_APIC_SPURIOUS);
APICErrInterruptHandler::initialize(IRQ_APIC_ERR);
// register IPI interrupt vector
APICIPIInterruptHandler::initialize(IRQ_APIC_IPI);
}
if (!m_is_x2) {
// local destination mode (flat mode), not supported in x2 mode
write_register(APIC_REG_DF, 0xf0000000);
}
// set error interrupt vector
set_lvt(APIC_REG_LVT_ERR, IRQ_APIC_ERR);
// set spurious interrupt vector
set_siv(APIC_REG_SIV, IRQ_APIC_SPURIOUS);
write_register(APIC_REG_LVT_TIMER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_THERMAL, APIC_LVT(0, 0) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_PERFORMANCE_COUNTER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_LINT0, APIC_LVT(0, 7) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_LINT1, APIC_LVT(0, 0) | APIC_LVT_TRIGGER_LEVEL);
write_register(APIC_REG_TPR, 0);
}
Thread* APIC::get_idle_thread(u32 cpu) const
{
VERIFY(cpu > 0);
return m_ap_idle_threads[cpu - 1];
}
UNMAP_AFTER_INIT void APIC::init_finished(u32 cpu)
{
// This method is called once the boot stack is no longer needed
VERIFY(cpu > 0);
VERIFY(cpu < m_processor_enabled_cnt);
// Since we're waiting on other APs here, we shouldn't have the
// scheduler lock
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
// Notify the BSP that we are done initializing. It will unmap the startup data at P8000
m_apic_ap_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
dbgln_if(APIC_DEBUG, "APIC: CPU #{} initialized, waiting for all others", cpu);
// The reason we're making all APs wait until the BSP signals them is that
// we don't want APs to trigger IPIs (e.g. through MM) while the BSP
// is unable to process them
while (!m_apic_ap_continue.load(AK::MemoryOrder::memory_order_consume)) {
IO::delay(200);
}
dbgln_if(APIC_DEBUG, "APIC: CPU #{} continues, all others are initialized", cpu);
// do_boot_aps() freed memory, so we need to update our tlb
Processor::flush_entire_tlb_local();
// Now enable all the interrupts
APIC::the().enable(cpu);
}
void APIC::broadcast_ipi()
{
dbgln_if(APIC_SMP_DEBUG, "SMP: Broadcast IPI from CPU #{}", Processor::current_id());
wait_for_pending_icr();
write_icr({ IRQ_APIC_IPI + IRQ_VECTOR_BASE, 0xffffffff, ICRReg::Fixed, ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf });
}
void APIC::send_ipi(u32 cpu)
{
dbgln_if(APIC_SMP_DEBUG, "SMP: Send IPI from CPU #{} to CPU #{}", Processor::current_id(), cpu);
VERIFY(cpu != Processor::current_id());
VERIFY(cpu < Processor::count());
wait_for_pending_icr();
write_icr({ IRQ_APIC_IPI + IRQ_VECTOR_BASE, m_is_x2 ? Processor::by_id(cpu).info().apic_id() : cpu, ICRReg::Fixed, m_is_x2 ? ICRReg::Physical : ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::NoShorthand });
}
UNMAP_AFTER_INIT APICTimer* APIC::initialize_timers(HardwareTimerBase& calibration_timer)
{
if (!m_apic_base && !m_is_x2)
return nullptr;
// We should only initialize and calibrate the APIC timer once on the BSP!
VERIFY(Processor::is_bootstrap_processor());
VERIFY(!m_apic_timer);
m_apic_timer = APICTimer::initialize(IRQ_APIC_TIMER, calibration_timer);
return m_apic_timer;
}
void APIC::setup_local_timer(u32 ticks, TimerMode timer_mode, bool enable)
{
u32 flags = 0;
switch (timer_mode) {
case TimerMode::OneShot:
flags |= APIC_LVT_TIMER_ONESHOT;
break;
case TimerMode::Periodic:
flags |= APIC_LVT_TIMER_PERIODIC;
break;
case TimerMode::TSCDeadline:
flags |= APIC_LVT_TIMER_TSCDEADLINE;
break;
}
if (!enable)
flags |= APIC_LVT_MASKED;
write_register(APIC_REG_LVT_TIMER, APIC_LVT(IRQ_APIC_TIMER + IRQ_VECTOR_BASE, 0) | flags);
u32 config = read_register(APIC_REG_TIMER_CONFIGURATION);
config &= ~0xf; // clear divisor (bits 0-3)
switch (get_timer_divisor()) {
case 1:
config |= (1 << 3) | 3;
break;
case 2:
break;
case 4:
config |= 1;
break;
case 8:
config |= 2;
break;
case 16:
config |= 3;
break;
case 32:
config |= (1 << 3);
break;
case 64:
config |= (1 << 3) | 1;
break;
case 128:
config |= (1 << 3) | 2;
break;
default:
VERIFY_NOT_REACHED();
}
write_register(APIC_REG_TIMER_CONFIGURATION, config);
if (timer_mode == TimerMode::Periodic)
write_register(APIC_REG_TIMER_INITIAL_COUNT, ticks / get_timer_divisor());
}
u32 APIC::get_timer_current_count()
{
return read_register(APIC_REG_TIMER_CURRENT_COUNT);
}
u32 APIC::get_timer_divisor()
{
return 16;
}
bool APICIPIInterruptHandler::handle_interrupt(const RegisterState&)
{
dbgln_if(APIC_SMP_DEBUG, "APIC IPI on CPU #{}", Processor::current_id());
return true;
}
bool APICIPIInterruptHandler::eoi()
{
dbgln_if(APIC_SMP_DEBUG, "SMP: IPI EOI");
APIC::the().eoi();
return true;
}
bool APICErrInterruptHandler::handle_interrupt(const RegisterState&)
{
dbgln("APIC: SMP error on CPU #{}", Processor::current_id());
return true;
}
bool APICErrInterruptHandler::eoi()
{
APIC::the().eoi();
return true;
}
bool HardwareTimer<GenericInterruptHandler>::eoi()
{
APIC::the().eoi();
return true;
}
}
|