summaryrefslogtreecommitdiff
path: root/Kernel/Interrupts/APIC.cpp
blob: 103fd1db8aef6d0f3ab12df99bb0a8403f6288ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <AK/Assertions.h>
#include <AK/Memory.h>
#include <AK/Singleton.h>
#include <AK/StringView.h>
#include <AK/Types.h>
#include <Kernel/ACPI/Parser.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Arch/i386/ProcessorInfo.h>
#include <Kernel/IO.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Interrupts/SpuriousInterruptHandler.h>
#include <Kernel/Thread.h>
#include <Kernel/Time/APICTimer.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PageDirectory.h>
#include <Kernel/VM/TypedMapping.h>

//#define APIC_DEBUG
//#define APIC_SMP_DEBUG

#define IRQ_APIC_TIMER (0xfc - IRQ_VECTOR_BASE)
#define IRQ_APIC_IPI (0xfd - IRQ_VECTOR_BASE)
#define IRQ_APIC_ERR (0xfe - IRQ_VECTOR_BASE)
#define IRQ_APIC_SPURIOUS (0xff - IRQ_VECTOR_BASE)

#define APIC_ICR_DELIVERY_PENDING (1 << 12)

#define APIC_ENABLED (1 << 8)

#define APIC_BASE_MSR 0x1b

#define APIC_REG_EOI 0xb0
#define APIC_REG_LD 0xd0
#define APIC_REG_DF 0xe0
#define APIC_REG_SIV 0xf0
#define APIC_REG_TPR 0x80
#define APIC_REG_ICR_LOW 0x300
#define APIC_REG_ICR_HIGH 0x310
#define APIC_REG_LVT_TIMER 0x320
#define APIC_REG_LVT_THERMAL 0x330
#define APIC_REG_LVT_PERFORMANCE_COUNTER 0x340
#define APIC_REG_LVT_LINT0 0x350
#define APIC_REG_LVT_LINT1 0x360
#define APIC_REG_LVT_ERR 0x370
#define APIC_REG_TIMER_INITIAL_COUNT 0x380
#define APIC_REG_TIMER_CURRENT_COUNT 0x390
#define APIC_REG_TIMER_CONFIGURATION 0x3e0

namespace Kernel {

static AK::Singleton<APIC> s_apic;

class APICIPIInterruptHandler final : public GenericInterruptHandler {
public:
    explicit APICIPIInterruptHandler(u8 interrupt_vector)
        : GenericInterruptHandler(interrupt_vector, true)
    {
    }
    virtual ~APICIPIInterruptHandler()
    {
    }

    static void initialize(u8 interrupt_number)
    {
        new APICIPIInterruptHandler(interrupt_number);
    }

    virtual void handle_interrupt(const RegisterState&) override;

    virtual bool eoi() override;

    virtual HandlerType type() const override { return HandlerType::IRQHandler; }
    virtual const char* purpose() const override { return "IPI Handler"; }
    virtual const char* controller() const override { return nullptr; }

    virtual size_t sharing_devices_count() const override { return 0; }
    virtual bool is_shared_handler() const override { return false; }
    virtual bool is_sharing_with_others() const override { return false; }

private:
};

class APICErrInterruptHandler final : public GenericInterruptHandler {
public:
    explicit APICErrInterruptHandler(u8 interrupt_vector)
        : GenericInterruptHandler(interrupt_vector, true)
    {
    }
    virtual ~APICErrInterruptHandler()
    {
    }

    static void initialize(u8 interrupt_number)
    {
        new APICErrInterruptHandler(interrupt_number);
    }

    virtual void handle_interrupt(const RegisterState&) override;

    virtual bool eoi() override;

    virtual HandlerType type() const override { return HandlerType::IRQHandler; }
    virtual const char* purpose() const override { return "SMP Error Handler"; }
    virtual const char* controller() const override { return nullptr; }

    virtual size_t sharing_devices_count() const override { return 0; }
    virtual bool is_shared_handler() const override { return false; }
    virtual bool is_sharing_with_others() const override { return false; }

private:
};

bool APIC::initialized()
{
    return s_apic.is_initialized();
}

APIC& APIC::the()
{
    ASSERT(APIC::initialized());
    return *s_apic;
}

void APIC::initialize()
{
    ASSERT(!APIC::initialized());
    s_apic.ensure_instance();
}

PhysicalAddress APIC::get_base()
{
    u32 lo, hi;
    MSR msr(APIC_BASE_MSR);
    msr.get(lo, hi);
    return PhysicalAddress(lo & 0xfffff000);
}

void APIC::set_base(const PhysicalAddress& base)
{
    u32 hi = 0;
    u32 lo = base.get() | 0x800;
    MSR msr(APIC_BASE_MSR);
    msr.set(lo, hi);
}

void APIC::write_register(u32 offset, u32 value)
{
    *reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr()) = value;
}

u32 APIC::read_register(u32 offset)
{
    return *reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr());
}

void APIC::set_lvt(u32 offset, u8 interrupt)
{
    write_register(offset, (read_register(offset) & 0xffffffff) | interrupt);
}

void APIC::set_siv(u32 offset, u8 interrupt)
{
    write_register(offset, (read_register(offset) & 0xffffffff) | interrupt | APIC_ENABLED);
}

void APIC::wait_for_pending_icr()
{
    while ((read_register(APIC_REG_ICR_LOW) & APIC_ICR_DELIVERY_PENDING) != 0) {
        IO::delay(200);
    }
}

void APIC::write_icr(const ICRReg& icr)
{
    write_register(APIC_REG_ICR_HIGH, icr.high());
    write_register(APIC_REG_ICR_LOW, icr.low());
}

#define APIC_LVT_TIMER_ONESHOT 0
#define APIC_LVT_TIMER_PERIODIC (1 << 17)
#define APIC_LVT_TIMER_TSCDEADLINE (1 << 18)

#define APIC_LVT_MASKED (1 << 16)
#define APIC_LVT_TRIGGER_LEVEL (1 << 14)
#define APIC_LVT(iv, dm) (((iv)&0xff) | (((dm)&0x7) << 8))

extern "C" void apic_ap_start();
extern "C" u16 apic_ap_start_size;
extern "C" u32 ap_cpu_init_stacks;
extern "C" u32 ap_cpu_init_processor_info_array;
extern "C" u32 ap_cpu_init_cr0;
extern "C" u32 ap_cpu_init_cr3;
extern "C" u32 ap_cpu_init_cr4;
extern "C" u32 ap_cpu_gdtr;
extern "C" u32 ap_cpu_idtr;

void APIC::eoi()
{
    write_register(APIC_REG_EOI, 0x0);
}

u8 APIC::spurious_interrupt_vector()
{
    return IRQ_APIC_SPURIOUS;
}

#define APIC_INIT_VAR_PTR(tpe, vaddr, varname)                         \
    reinterpret_cast<volatile tpe*>(reinterpret_cast<ptrdiff_t>(vaddr) \
        + reinterpret_cast<ptrdiff_t>(&varname)                        \
        - reinterpret_cast<ptrdiff_t>(&apic_ap_start))

bool APIC::init_bsp()
{
    // FIXME: Use the ACPI MADT table
    if (!MSR::have())
        return false;

    // check if we support local apic
    CPUID id(1);
    if ((id.edx() & (1 << 9)) == 0)
        return false;

    PhysicalAddress apic_base = get_base();
#ifdef APIC_DEBUG
    klog() << "Initializing APIC, base: " << apic_base;
#endif
    set_base(apic_base);

    m_apic_base = MM.allocate_kernel_region(apic_base.page_base(), PAGE_SIZE, {}, Region::Access::Read | Region::Access::Write);
    if (!m_apic_base) {
        klog() << "APIC: Failed to allocate memory for APIC base";
        return false;
    }

    auto rsdp = ACPI::StaticParsing::find_rsdp();
    if (!rsdp.has_value()) {
        klog() << "APIC: RSDP not found";
        return false;
    }
    auto madt_address = ACPI::StaticParsing::find_table(rsdp.value(), "APIC");
    if (madt_address.is_null()) {
        klog() << "APIC: MADT table not found";
        return false;
    }

    auto madt = map_typed<ACPI::Structures::MADT>(madt_address);
    size_t entry_index = 0;
    size_t entries_length = madt->h.length - sizeof(ACPI::Structures::MADT);
    auto* madt_entry = madt->entries;
    while (entries_length > 0) {
        size_t entry_length = madt_entry->length;
        if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::LocalAPIC) {
            auto* plapic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalAPIC*)madt_entry;
#ifdef APIC_DEBUG
            klog() << "APIC: AP found @ MADT entry " << entry_index << ", Processor Id: " << String::format("%02x", plapic_entry->acpi_processor_id)
                   << " APIC Id: " << String::format("%02x", plapic_entry->apic_id) << " Flags: " << String::format("%08x", plapic_entry->flags);
#endif
            m_processor_cnt++;
            if ((plapic_entry->flags & 0x1) != 0)
                m_processor_enabled_cnt++;
        }
        madt_entry = (ACPI::Structures::MADTEntryHeader*)(VirtualAddress(madt_entry).offset(entry_length).get());
        entries_length -= entry_length;
        entry_index++;
    }

    if (m_processor_enabled_cnt < 1)
        m_processor_enabled_cnt = 1;
    if (m_processor_cnt < 1)
        m_processor_cnt = 1;

    klog() << "APIC Processors found: " << m_processor_cnt << ", enabled: " << m_processor_enabled_cnt;

    enable(0);
    return true;
}

void APIC::do_boot_aps()
{
    ASSERT(m_processor_enabled_cnt > 1);
    u32 aps_to_enable = m_processor_enabled_cnt - 1;

    // Copy the APIC startup code and variables to P0x00008000
    // Also account for the data appended to:
    // * aps_to_enable u32 values for ap_cpu_init_stacks
    // * aps_to_enable u32 values for ap_cpu_init_processor_info_array
    auto apic_startup_region = MM.allocate_kernel_region_identity(PhysicalAddress(0x8000), PAGE_ROUND_UP(apic_ap_start_size + (2 * aps_to_enable * sizeof(u32))), {}, Region::Access::Read | Region::Access::Write | Region::Access::Execute);
    memcpy(apic_startup_region->vaddr().as_ptr(), reinterpret_cast<const void*>(apic_ap_start), apic_ap_start_size);

    // Allocate enough stacks for all APs
    Vector<OwnPtr<Region>> apic_ap_stacks;
    for (u32 i = 0; i < aps_to_enable; i++) {
        auto stack_region = MM.allocate_kernel_region(Thread::default_kernel_stack_size, {}, Region::Access::Read | Region::Access::Write, false, true, true);
        if (!stack_region) {
            klog() << "APIC: Failed to allocate stack for AP #" << i;
            return;
        }
        stack_region->set_stack(true);
        apic_ap_stacks.append(move(stack_region));
    }

    // Store pointers to all stacks for the APs to use
    auto ap_stack_array = APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_stacks);
    ASSERT(aps_to_enable == apic_ap_stacks.size());
    for (size_t i = 0; i < aps_to_enable; i++) {
        ap_stack_array[i] = apic_ap_stacks[i]->vaddr().get() + Thread::default_kernel_stack_size;
#ifdef APIC_DEBUG
        klog() << "APIC: CPU[" << (i + 1) << "] stack at " << VirtualAddress(ap_stack_array[i]);
#endif
    }

    // Allocate Processor structures for all APs and store the pointer to the data
    m_ap_processor_info.resize(aps_to_enable);
    for (size_t i = 0; i < aps_to_enable; i++)
        m_ap_processor_info[i] = make<Processor>();
    auto ap_processor_info_array = &ap_stack_array[aps_to_enable];
    for (size_t i = 0; i < aps_to_enable; i++) {
        ap_processor_info_array[i] = FlatPtr(m_ap_processor_info[i].ptr());
#ifdef APIC_DEBUG
        klog() << "APIC: CPU[" << (i + 1) << "] Processor at " << VirtualAddress(ap_processor_info_array[i]);
#endif
    }
    *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_processor_info_array) = FlatPtr(&ap_processor_info_array[0]);

    // Store the BSP's CR3 value for the APs to use
    *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr3) = MM.kernel_page_directory().cr3();

    // Store the BSP's GDT and IDT for the APs to use
    const auto& gdtr = Processor::current().get_gdtr();
    *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_gdtr) = FlatPtr(&gdtr);
    const auto& idtr = get_idtr();
    *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_idtr) = FlatPtr(&idtr);

    // Store the BSP's CR0 and CR4 values for the APs to use
    *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr0) = read_cr0();
    *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr4) = read_cr4();

    // Create an idle thread for each processor. We have to do this here
    // because we won't be able to send FlushTLB messages, so we have to
    // have all memory set up for the threads so that when the APs are
    // starting up, they can access all the memory properly
    m_ap_idle_threads.resize(aps_to_enable);
    for (u32 i = 0; i < aps_to_enable; i++)
        m_ap_idle_threads[i] = Scheduler::create_ap_idle_thread(i + 1);

#ifdef APIC_DEBUG
    klog() << "APIC: Starting " << aps_to_enable << " AP(s)";
#endif

    // INIT
    write_icr(ICRReg(0, ICRReg::INIT, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf));

    IO::delay(10 * 1000);

    for (int i = 0; i < 2; i++) {
        // SIPI
        write_icr(ICRReg(0x08, ICRReg::StartUp, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf)); // start execution at P8000

        IO::delay(200);
    }

    // Now wait until the ap_cpu_init_pending variable dropped to 0, which means all APs are initialized and no longer need these special mappings
    if (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable) {
#ifdef APIC_DEBUG
        klog() << "APIC: Waiting for " << aps_to_enable << " AP(s) to finish initialization...";
#endif
        do {
            // Wait a little bit
            IO::delay(200);
        } while (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable);
    }

#ifdef APIC_DEBUG
    klog() << "APIC: " << m_processor_enabled_cnt << " processors are initialized and running";
#endif
}

void APIC::boot_aps()
{
    if (m_processor_enabled_cnt <= 1)
        return;

    // We split this into another call because do_boot_aps() will cause
    // MM calls upon exit, and we don't want to call smp_enable before that
    do_boot_aps();

    // Enable SMP, which means IPIs may now be sent
    Processor::smp_enable();

#ifdef APIC_DEBUG
    dbg() << "All processors initialized and waiting, trigger all to continue";
#endif

    // Now trigger all APs to continue execution (need to do this after
    // the regions have been freed so that we don't trigger IPIs
    m_apic_ap_continue.store(1, AK::MemoryOrder::memory_order_release);
}

void APIC::enable(u32 cpu)
{
    if (cpu >= 8) {
        // TODO: x2apic support?
        klog() << "SMP support is currently limited to 8 CPUs!";
        Processor::halt();
    }

    u32 apic_id = (1u << cpu);

    write_register(APIC_REG_LD, (read_register(APIC_REG_LD) & 0x00ffffff) | (apic_id << 24)); // TODO: only if not in x2apic mode

    // read it back to make sure it's actually set
    apic_id = read_register(APIC_REG_LD) >> 24;
    Processor::current().info().set_apic_id(apic_id);

#ifdef APIC_DEBUG
    klog() << "Enabling local APIC for cpu #" << cpu << " apic id: " << apic_id;
#endif

    if (cpu == 0) {
        SpuriousInterruptHandler::initialize(IRQ_APIC_SPURIOUS);

        // set error interrupt vector
        set_lvt(APIC_REG_LVT_ERR, IRQ_APIC_ERR);
        APICErrInterruptHandler::initialize(IRQ_APIC_ERR);

        // register IPI interrupt vector
        APICIPIInterruptHandler::initialize(IRQ_APIC_IPI);
    }

    // set spurious interrupt vector
    set_siv(APIC_REG_SIV, IRQ_APIC_SPURIOUS);

    // local destination mode (flat mode)
    write_register(APIC_REG_DF, 0xf0000000);

    write_register(APIC_REG_LVT_TIMER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
    write_register(APIC_REG_LVT_THERMAL, APIC_LVT(0, 0) | APIC_LVT_MASKED);
    write_register(APIC_REG_LVT_PERFORMANCE_COUNTER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
    write_register(APIC_REG_LVT_LINT0, APIC_LVT(0, 7) | APIC_LVT_MASKED);
    write_register(APIC_REG_LVT_LINT1, APIC_LVT(0, 0) | APIC_LVT_TRIGGER_LEVEL);

    write_register(APIC_REG_TPR, 0);
}

Thread* APIC::get_idle_thread(u32 cpu) const
{
    ASSERT(cpu > 0);
    return m_ap_idle_threads[cpu - 1];
}

void APIC::init_finished(u32 cpu)
{
    // This method is called once the boot stack is no longer needed
    ASSERT(cpu > 0);
    ASSERT(cpu < m_processor_enabled_cnt);
    // Since we're waiting on other APs here, we shouldn't have the
    // scheduler lock
    ASSERT(!g_scheduler_lock.own_lock());

    // Notify the BSP that we are done initializing. It will unmap the startup data at P8000
    m_apic_ap_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
#ifdef APIC_DEBUG
    klog() << "APIC: cpu #" << cpu << " initialized, waiting for all others";
#endif

    // The reason we're making all APs wait until the BSP signals them is that
    // we don't want APs to trigger IPIs (e.g. through MM) while the BSP
    // is unable to process them
    while (!m_apic_ap_continue.load(AK::MemoryOrder::memory_order_consume)) {
        IO::delay(200);
    }

#ifdef APIC_DEBUG
    klog() << "APIC: cpu #" << cpu << " continues, all others are initialized";
#endif

    // do_boot_aps() freed memory, so we need to update our tlb
    Processor::flush_entire_tlb_local();

    // Now enable all the interrupts
    APIC::the().enable(cpu);
}

void APIC::broadcast_ipi()
{
#ifdef APIC_SMP_DEBUG
    klog() << "SMP: Broadcast IPI from cpu #" << Processor::current().id();
#endif
    wait_for_pending_icr();
    write_icr(ICRReg(IRQ_APIC_IPI + IRQ_VECTOR_BASE, ICRReg::Fixed, ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf));
}

void APIC::send_ipi(u32 cpu)
{
    auto& proc = Processor::current();
#ifdef APIC_SMP_DEBUG
    klog() << "SMP: Send IPI from cpu #" << proc.id() << " to cpu #" << cpu;
#endif
    ASSERT(cpu != proc.id());
    ASSERT(cpu < 8);
    wait_for_pending_icr();
    write_icr(ICRReg(IRQ_APIC_IPI + IRQ_VECTOR_BASE, ICRReg::Fixed, ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::NoShorthand, 1u << cpu));
}

APICTimer* APIC::initialize_timers(HardwareTimerBase& calibration_timer)
{
    if (!m_apic_base)
        return nullptr;

    // We should only initialize and calibrate the APIC timer once on the BSP!
    ASSERT(Processor::current().id() == 0);
    ASSERT(!m_apic_timer);

    m_apic_timer = APICTimer::initialize(IRQ_APIC_TIMER, calibration_timer);
    return m_apic_timer;
}

void APIC::setup_local_timer(u32 ticks, TimerMode timer_mode, bool enable)
{
    u32 flags = 0;
    switch (timer_mode) {
    case TimerMode::OneShot:
        flags |= APIC_LVT_TIMER_ONESHOT;
        break;
    case TimerMode::Periodic:
        flags |= APIC_LVT_TIMER_PERIODIC;
        break;
    case TimerMode::TSCDeadline:
        flags |= APIC_LVT_TIMER_TSCDEADLINE;
        break;
    }
    if (!enable)
        flags |= APIC_LVT_MASKED;
    write_register(APIC_REG_LVT_TIMER, APIC_LVT(IRQ_APIC_TIMER + IRQ_VECTOR_BASE, 0) | flags);

    u32 config = read_register(APIC_REG_TIMER_CONFIGURATION);
    config &= ~0xf; // clear divisor (bits 0-3)
    switch (get_timer_divisor()) {
    case 1:
        config |= (1 << 3) | 3;
        break;
    case 2:
        break;
    case 4:
        config |= 1;
        break;
    case 8:
        config |= 2;
        break;
    case 16:
        config |= 3;
        break;
    case 32:
        config |= (1 << 3);
        break;
    case 64:
        config |= (1 << 3) | 1;
        break;
    case 128:
        config |= (1 << 3) | 2;
        break;
    default:
        ASSERT_NOT_REACHED();
    }
    write_register(APIC_REG_TIMER_CONFIGURATION, config);

    if (timer_mode == TimerMode::Periodic)
        write_register(APIC_REG_TIMER_INITIAL_COUNT, ticks / get_timer_divisor());
}

u32 APIC::get_timer_current_count()
{
    return read_register(APIC_REG_TIMER_CURRENT_COUNT);
}

u32 APIC::get_timer_divisor()
{
    return 16;
}

void APICIPIInterruptHandler::handle_interrupt(const RegisterState&)
{
#ifdef APIC_SMP_DEBUG
    klog() << "APIC IPI on cpu #" << Processor::current().id();
#endif
}

bool APICIPIInterruptHandler::eoi()
{
#ifdef APIC_SMP_DEBUG
    klog() << "SMP: IPI eoi";
#endif
    APIC::the().eoi();
    return true;
}

void APICErrInterruptHandler::handle_interrupt(const RegisterState&)
{
    klog() << "APIC: SMP error on cpu #" << Processor::current().id();
}

bool APICErrInterruptHandler::eoi()
{
    APIC::the().eoi();
    return true;
}

bool HardwareTimer<GenericInterruptHandler>::eoi()
{
    APIC::the().eoi();
    return true;
}

}