summaryrefslogtreecommitdiff
path: root/Kernel/Heap/kmalloc.cpp
blob: a2b12b6e7a06fa2c52368dcaeddb404bac768c6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/*
 * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Assertions.h>
#include <AK/Types.h>
#include <Kernel/Debug.h>
#include <Kernel/Heap/Heap.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KSyms.h>
#include <Kernel/Locking/Spinlock.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Panic.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Sections.h>
#include <Kernel/StdLib.h>

#if ARCH(I386)
static constexpr size_t CHUNK_SIZE = 32;
#else
static constexpr size_t CHUNK_SIZE = 64;
#endif
static_assert(is_power_of_two(CHUNK_SIZE));

static constexpr size_t INITIAL_KMALLOC_MEMORY_SIZE = 2 * MiB;

// Treat the heap as logically separate from .bss
__attribute__((section(".heap"))) static u8 initial_kmalloc_memory[INITIAL_KMALLOC_MEMORY_SIZE];

namespace std {
const nothrow_t nothrow;
}

static RecursiveSpinlock s_lock; // needs to be recursive because of dump_backtrace()

struct KmallocSubheap {
    KmallocSubheap(u8* base, size_t size)
        : allocator(base, size)
    {
    }

    IntrusiveListNode<KmallocSubheap> list_node;
    using List = IntrusiveList<&KmallocSubheap::list_node>;
    Heap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE> allocator;
};

class KmallocSlabBlock {
public:
    static constexpr size_t block_size = 64 * KiB;
    static constexpr FlatPtr block_mask = ~(block_size - 1);

    KmallocSlabBlock(size_t slab_size)
        : m_slab_size(slab_size)
        , m_slab_count((block_size - sizeof(KmallocSlabBlock)) / slab_size)
    {
        for (size_t i = 0; i < m_slab_count; ++i) {
            auto* freelist_entry = (FreelistEntry*)(void*)(&m_data[i * slab_size]);
            freelist_entry->next = m_freelist;
            m_freelist = freelist_entry;
        }
    }

    void* allocate()
    {
        VERIFY(m_freelist);
        ++m_allocated_slabs;
        return exchange(m_freelist, m_freelist->next);
    }

    void deallocate(void* ptr)
    {
        VERIFY(ptr >= &m_data && ptr < ((u8*)this + block_size));
        --m_allocated_slabs;
        auto* freelist_entry = (FreelistEntry*)ptr;
        freelist_entry->next = m_freelist;
        m_freelist = freelist_entry;
    }

    bool is_full() const
    {
        return m_freelist == nullptr;
    }

    size_t allocated_bytes() const
    {
        return m_allocated_slabs * m_slab_size;
    }

    size_t free_bytes() const
    {
        return (m_slab_count - m_allocated_slabs) * m_slab_size;
    }

    IntrusiveListNode<KmallocSlabBlock> list_node;
    using List = IntrusiveList<&KmallocSlabBlock::list_node>;

private:
    struct FreelistEntry {
        FreelistEntry* next;
    };

    FreelistEntry* m_freelist { nullptr };

    size_t m_slab_size { 0 };
    size_t m_slab_count { 0 };
    size_t m_allocated_slabs { 0 };

    [[gnu::aligned(16)]] u8 m_data[];
};

class KmallocSlabheap {
public:
    KmallocSlabheap(size_t slab_size)
        : m_slab_size(slab_size)
    {
    }

    size_t slab_size() const { return m_slab_size; }

    void* allocate()
    {
        if (m_usable_blocks.is_empty()) {
            // FIXME: This allocation wastes `block_size` bytes due to the implementation of kmalloc_aligned().
            //        Handle this with a custom VM+page allocator instead of using kmalloc_aligned().
            auto* slot = kmalloc_aligned(KmallocSlabBlock::block_size, KmallocSlabBlock::block_size);
            if (!slot) {
                // FIXME: Dare to return nullptr!
                PANIC("OOM while growing slabheap ({})", m_slab_size);
            }
            auto* block = new (slot) KmallocSlabBlock(m_slab_size);
            m_usable_blocks.append(*block);
        }
        auto* block = m_usable_blocks.first();
        auto* ptr = block->allocate();
        if (block->is_full())
            m_full_blocks.append(*block);

        memset(ptr, KMALLOC_SCRUB_BYTE, m_slab_size);
        return ptr;
    }

    void deallocate(void* ptr)
    {
        memset(ptr, KFREE_SCRUB_BYTE, m_slab_size);

        auto* block = (KmallocSlabBlock*)((FlatPtr)ptr & KmallocSlabBlock::block_mask);
        bool block_was_full = block->is_full();
        block->deallocate(ptr);
        if (block_was_full)
            m_usable_blocks.append(*block);
    }

    size_t allocated_bytes() const
    {
        size_t total = m_full_blocks.size_slow() * KmallocSlabBlock::block_size;
        for (auto const& slab_block : m_usable_blocks)
            total += slab_block.allocated_bytes();
        return total;
    }

    size_t free_bytes() const
    {
        size_t total = 0;
        for (auto const& slab_block : m_usable_blocks)
            total += slab_block.free_bytes();
        return total;
    }

    bool try_purge()
    {
        bool did_purge = false;

        // Note: We cannot remove children from the list when using a structured loop,
        //       Because we need to advance the iterator before we delete the underlying
        //       value, so we have to iterate manually

        auto block = m_usable_blocks.begin();
        while (block != m_usable_blocks.end()) {
            if (block->allocated_bytes() != 0) {
                ++block;
                continue;
            }
            auto& block_to_remove = *block;
            ++block;
            block_to_remove.list_node.remove();
            block_to_remove.~KmallocSlabBlock();
            kfree_aligned(&block_to_remove);

            did_purge = true;
        }
        return did_purge;
    }

private:
    size_t m_slab_size { 0 };

    KmallocSlabBlock::List m_usable_blocks;
    KmallocSlabBlock::List m_full_blocks;
};

struct KmallocGlobalData {
    static constexpr size_t minimum_subheap_size = 1 * MiB;

    KmallocGlobalData(u8* initial_heap, size_t initial_heap_size)
    {
        add_subheap(initial_heap, initial_heap_size);
    }

    void add_subheap(u8* storage, size_t storage_size)
    {
        dbgln_if(KMALLOC_DEBUG, "Adding kmalloc subheap @ {} with size {}", storage, storage_size);
        static_assert(sizeof(KmallocSubheap) <= PAGE_SIZE);
        auto* subheap = new (storage) KmallocSubheap(storage + PAGE_SIZE, storage_size - PAGE_SIZE);
        subheaps.append(*subheap);
    }

    void* allocate(size_t size)
    {
        VERIFY(!expansion_in_progress);

        for (auto& slabheap : slabheaps) {
            if (size <= slabheap.slab_size())
                return slabheap.allocate();
        }

        for (auto& subheap : subheaps) {
            if (auto* ptr = subheap.allocator.allocate(size))
                return ptr;
        }

        // NOTE: This size calculation is a mirror of kmalloc_aligned(KmallocSlabBlock)
        if (size <= KmallocSlabBlock::block_size * 2 + sizeof(ptrdiff_t) + sizeof(size_t)) {
            // FIXME: We should propagate a freed pointer, to find the specific subheap it belonged to
            //        This would save us iterating over them in the next step and remove a recursion
            bool did_purge = false;
            for (auto& slabheap : slabheaps) {
                if (slabheap.try_purge()) {
                    dbgln_if(KMALLOC_DEBUG, "Kmalloc purged block(s) from slabheap of size {} to avoid expansion", slabheap.slab_size());
                    did_purge = true;
                    break;
                }
            }
            if (did_purge)
                return allocate(size);
        }

        if (!try_expand(size)) {
            PANIC("OOM when trying to expand kmalloc heap.");
        }

        return allocate(size);
    }

    void deallocate(void* ptr, size_t size)
    {
        VERIFY(!expansion_in_progress);
        VERIFY(is_valid_kmalloc_address(VirtualAddress { ptr }));

        for (auto& slabheap : slabheaps) {
            if (size <= slabheap.slab_size())
                return slabheap.deallocate(ptr);
        }

        for (auto& subheap : subheaps) {
            if (subheap.allocator.contains(ptr)) {
                subheap.allocator.deallocate(ptr);
                return;
            }
        }

        PANIC("Bogus pointer passed to kfree_sized({:p}, {})", ptr, size);
    }

    size_t allocated_bytes() const
    {
        size_t total = 0;
        for (auto const& subheap : subheaps)
            total += subheap.allocator.allocated_bytes();
        for (auto const& slabheap : slabheaps)
            total += slabheap.allocated_bytes();
        return total;
    }

    size_t free_bytes() const
    {
        size_t total = 0;
        for (auto const& subheap : subheaps)
            total += subheap.allocator.free_bytes();
        for (auto const& slabheap : slabheaps)
            total += slabheap.free_bytes();
        return total;
    }

    bool try_expand(size_t allocation_request)
    {
        VERIFY(!expansion_in_progress);
        TemporaryChange change(expansion_in_progress, true);

        auto new_subheap_base = expansion_data->next_virtual_address;
        Checked<size_t> padded_allocation_request = allocation_request;
        padded_allocation_request *= 2;
        padded_allocation_request += PAGE_SIZE;
        if (padded_allocation_request.has_overflow()) {
            PANIC("Integer overflow during kmalloc heap expansion");
        }
        auto rounded_allocation_request = Memory::page_round_up(padded_allocation_request.value());
        if (rounded_allocation_request.is_error()) {
            PANIC("Integer overflow computing pages for kmalloc heap expansion");
        }
        size_t new_subheap_size = max(minimum_subheap_size, rounded_allocation_request.value());

        dbgln_if(KMALLOC_DEBUG, "Unable to allocate {}, expanding kmalloc heap", allocation_request);

        if (!expansion_data->virtual_range.contains(new_subheap_base, new_subheap_size)) {
            // FIXME: Dare to return false and allow kmalloc() to fail!
            PANIC("Out of address space when expanding kmalloc heap.");
        }

        auto physical_pages_or_error = MM.commit_user_physical_pages(new_subheap_size / PAGE_SIZE);
        if (physical_pages_or_error.is_error()) {
            // FIXME: Dare to return false!
            PANIC("Out of physical pages when expanding kmalloc heap.");
        }
        auto physical_pages = physical_pages_or_error.release_value();

        expansion_data->next_virtual_address = expansion_data->next_virtual_address.offset(new_subheap_size);

        auto cpu_supports_nx = Processor::current().has_feature(CPUFeature::NX);

        SpinlockLocker mm_locker(Memory::s_mm_lock);
        SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock());

        for (auto vaddr = new_subheap_base; !physical_pages.is_empty(); vaddr = vaddr.offset(PAGE_SIZE)) {
            // FIXME: We currently leak physical memory when mapping it into the kmalloc heap.
            auto& page = physical_pages.take_one().leak_ref();
            auto* pte = MM.pte(MM.kernel_page_directory(), vaddr);
            VERIFY(pte);
            pte->set_physical_page_base(page.paddr().get());
            pte->set_global(true);
            pte->set_user_allowed(false);
            pte->set_writable(true);
            if (cpu_supports_nx)
                pte->set_execute_disabled(true);
            pte->set_present(true);
        }

        add_subheap(new_subheap_base.as_ptr(), new_subheap_size);
        return true;
    }

    void enable_expansion()
    {
        // FIXME: This range can be much bigger on 64-bit, but we need to figure something out for 32-bit.
        auto reserved_region = MUST(MM.region_tree().allocate_unbacked_anywhere(64 * MiB, 1 * MiB));

        expansion_data = KmallocGlobalData::ExpansionData {
            .virtual_range = reserved_region->range(),
            .next_virtual_address = reserved_region->range().base(),
        };

        // Make sure the entire kmalloc VM range is backed by page tables.
        // This avoids having to deal with lazy page table allocation during heap expansion.
        SpinlockLocker mm_locker(Memory::s_mm_lock);
        SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock());
        for (auto vaddr = reserved_region->range().base(); vaddr < reserved_region->range().end(); vaddr = vaddr.offset(PAGE_SIZE)) {
            MM.ensure_pte(MM.kernel_page_directory(), vaddr);
        }

        (void)reserved_region.leak_ptr();
    }

    struct ExpansionData {
        Memory::VirtualRange virtual_range;
        VirtualAddress next_virtual_address;
    };
    Optional<ExpansionData> expansion_data;

    bool is_valid_kmalloc_address(VirtualAddress vaddr) const
    {
        if (vaddr.as_ptr() >= initial_kmalloc_memory && vaddr.as_ptr() < (initial_kmalloc_memory + INITIAL_KMALLOC_MEMORY_SIZE))
            return true;

        if (!expansion_data.has_value())
            return false;

        return expansion_data->virtual_range.contains(vaddr);
    }

    KmallocSubheap::List subheaps;

    KmallocSlabheap slabheaps[6] = { 16, 32, 64, 128, 256, 512 };

    bool expansion_in_progress { false };
};

READONLY_AFTER_INIT static KmallocGlobalData* g_kmalloc_global;
alignas(KmallocGlobalData) static u8 g_kmalloc_global_heap[sizeof(KmallocGlobalData)];

static size_t g_kmalloc_call_count;
static size_t g_kfree_call_count;
static size_t g_nested_kfree_calls;
bool g_dump_kmalloc_stacks;

void kmalloc_enable_expand()
{
    g_kmalloc_global->enable_expansion();
}

static inline void kmalloc_verify_nospinlock_held()
{
    // Catch bad callers allocating under spinlock.
    if constexpr (KMALLOC_VERIFY_NO_SPINLOCK_HELD) {
        VERIFY(!Processor::in_critical());
    }
}

UNMAP_AFTER_INIT void kmalloc_init()
{
    // Zero out heap since it's placed after end_of_kernel_bss.
    memset(initial_kmalloc_memory, 0, sizeof(initial_kmalloc_memory));
    g_kmalloc_global = new (g_kmalloc_global_heap) KmallocGlobalData(initial_kmalloc_memory, sizeof(initial_kmalloc_memory));

    s_lock.initialize();
}

void* kmalloc(size_t size)
{
    kmalloc_verify_nospinlock_held();
    SpinlockLocker lock(s_lock);
    ++g_kmalloc_call_count;

    if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
        dbgln("kmalloc({})", size);
        Kernel::dump_backtrace();
    }

    void* ptr = g_kmalloc_global->allocate(size);

    Thread* current_thread = Thread::current();
    if (!current_thread)
        current_thread = Processor::idle_thread();
    if (current_thread) {
        // FIXME: By the time we check this, we have already allocated above.
        //        This means that in the case of an infinite recursion, we can't catch it this way.
        VERIFY(current_thread->is_allocation_enabled());
        PerformanceManager::add_kmalloc_perf_event(*current_thread, size, (FlatPtr)ptr);
    }

    return ptr;
}

void* kcalloc(size_t count, size_t size)
{
    if (Checked<size_t>::multiplication_would_overflow(count, size))
        return nullptr;
    size_t new_size = count * size;
    auto* ptr = kmalloc(new_size);
    // FIXME: Avoid redundantly scrubbing the memory in kmalloc()
    if (ptr)
        memset(ptr, 0, new_size);
    return ptr;
}

void kfree_sized(void* ptr, size_t size)
{
    if (!ptr)
        return;

    VERIFY(size > 0);

    kmalloc_verify_nospinlock_held();
    SpinlockLocker lock(s_lock);
    ++g_kfree_call_count;
    ++g_nested_kfree_calls;

    if (g_nested_kfree_calls == 1) {
        Thread* current_thread = Thread::current();
        if (!current_thread)
            current_thread = Processor::idle_thread();
        if (current_thread) {
            VERIFY(current_thread->is_allocation_enabled());
            PerformanceManager::add_kfree_perf_event(*current_thread, 0, (FlatPtr)ptr);
        }
    }

    g_kmalloc_global->deallocate(ptr, size);
    --g_nested_kfree_calls;
}

size_t kmalloc_good_size(size_t size)
{
    VERIFY(size > 0);
    // NOTE: There's no need to take the kmalloc lock, as the kmalloc slab-heaps (and their sizes) are constant
    for (auto const& slabheap : g_kmalloc_global->slabheaps) {
        if (size <= slabheap.slab_size())
            return slabheap.slab_size();
    }
    return round_up_to_power_of_two(size + Heap<CHUNK_SIZE>::AllocationHeaderSize, CHUNK_SIZE) - Heap<CHUNK_SIZE>::AllocationHeaderSize;
}

void* kmalloc_aligned(size_t size, size_t alignment)
{
    Checked<size_t> real_allocation_size = size;
    real_allocation_size += alignment;
    real_allocation_size += sizeof(ptrdiff_t) + sizeof(size_t);
    void* ptr = kmalloc(real_allocation_size.value());
    if (ptr == nullptr)
        return nullptr;
    size_t max_addr = (size_t)ptr + alignment;
    void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
    ((ptrdiff_t*)aligned_ptr)[-1] = (ptrdiff_t)((u8*)aligned_ptr - (u8*)ptr);
    ((size_t*)aligned_ptr)[-2] = real_allocation_size.value();
    return aligned_ptr;
}

void* operator new(size_t size)
{
    void* ptr = kmalloc(size);
    VERIFY(ptr);
    return ptr;
}

void* operator new(size_t size, std::nothrow_t const&) noexcept
{
    return kmalloc(size);
}

void* operator new(size_t size, std::align_val_t al)
{
    void* ptr = kmalloc_aligned(size, (size_t)al);
    VERIFY(ptr);
    return ptr;
}

void* operator new(size_t size, std::align_val_t al, std::nothrow_t const&) noexcept
{
    return kmalloc_aligned(size, (size_t)al);
}

void* operator new[](size_t size)
{
    void* ptr = kmalloc(size);
    VERIFY(ptr);
    return ptr;
}

void* operator new[](size_t size, std::nothrow_t const&) noexcept
{
    return kmalloc(size);
}

void operator delete(void*) noexcept
{
    // All deletes in kernel code should have a known size.
    VERIFY_NOT_REACHED();
}

void operator delete(void* ptr, size_t size) noexcept
{
    return kfree_sized(ptr, size);
}

void operator delete(void* ptr, size_t, std::align_val_t) noexcept
{
    return kfree_aligned(ptr);
}

void operator delete[](void*) noexcept
{
    // All deletes in kernel code should have a known size.
    VERIFY_NOT_REACHED();
}

void operator delete[](void* ptr, size_t size) noexcept
{
    return kfree_sized(ptr, size);
}

void get_kmalloc_stats(kmalloc_stats& stats)
{
    SpinlockLocker lock(s_lock);
    stats.bytes_allocated = g_kmalloc_global->allocated_bytes();
    stats.bytes_free = g_kmalloc_global->free_bytes();
    stats.kmalloc_call_count = g_kmalloc_call_count;
    stats.kfree_call_count = g_kfree_call_count;
}