summaryrefslogtreecommitdiff
path: root/Kernel/Heap/kmalloc.cpp
blob: 2758c3fedc161ea35566716e24b8ddd965dfbba7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
/*
 * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

/*
 * Really really *really* Q&D malloc() and free() implementations
 * just to get going. Don't ever let anyone see this shit. :^)
 */

#include <AK/Assertions.h>
#include <AK/NonnullOwnPtrVector.h>
#include <AK/Types.h>
#include <Kernel/Debug.h>
#include <Kernel/Heap/Heap.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KSyms.h>
#include <Kernel/Locking/Spinlock.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Panic.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Sections.h>
#include <Kernel/StdLib.h>

#define CHUNK_SIZE 32
#define POOL_SIZE (2 * MiB)
#define ETERNAL_RANGE_SIZE (4 * MiB)

namespace std {
const nothrow_t nothrow;
}

static RecursiveSpinlock s_lock; // needs to be recursive because of dump_backtrace()

static void kmalloc_allocate_backup_memory();

struct KmallocGlobalHeap {
    struct ExpandGlobalHeap {
        KmallocGlobalHeap& m_global_heap;

        ExpandGlobalHeap(KmallocGlobalHeap& global_heap)
            : m_global_heap(global_heap)
        {
        }

        bool m_adding { false };
        bool add_memory(size_t allocation_request)
        {
            if (!Memory::MemoryManager::is_initialized()) {
                if constexpr (KMALLOC_DEBUG) {
                    dmesgln("kmalloc: Cannot expand heap before MM is initialized!");
                }
                return false;
            }
            VERIFY(!m_adding);
            TemporaryChange change(m_adding, true);
            // At this point we have very little memory left. Any attempt to
            // kmalloc() could fail, so use our backup memory first, so we
            // can't really reliably allocate even a new region of memory.
            // This is why we keep a backup region, which we can
            auto region = move(m_global_heap.m_backup_memory);
            if (!region) {
                // Be careful to not log too much here. We don't want to trigger
                // any further calls to kmalloc(). We're already out of memory
                // and don't have any backup memory, either!
                if constexpr (KMALLOC_DEBUG) {
                    dmesgln("kmalloc: Cannot expand heap: no backup memory");
                }
                return false;
            }

            // At this point we should have at least enough memory from the
            // backup region to be able to log properly
            if constexpr (KMALLOC_DEBUG) {
                dmesgln("kmalloc: Adding memory to heap at {}, bytes: {}", region->vaddr(), region->size());
            }

            auto& subheap = m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
            m_global_heap.m_subheap_memory.append(region.release_nonnull());

            // Since we pulled in our backup heap, make sure we allocate another
            // backup heap before returning. Otherwise we potentially lose
            // the ability to expand the heap next time we get called.
            ScopeGuard guard([&]() {
                // We may need to defer allocating backup memory because the
                // heap expansion may have been triggered while holding some
                // other spinlock. If the expansion happens to need the same
                // spinlock we would deadlock. So, if we're in any lock, defer
                Processor::current().deferred_call_queue(kmalloc_allocate_backup_memory);
            });

            // Now that we added our backup memory, check if the backup heap
            // was big enough to likely satisfy the request
            if (subheap.free_bytes() < allocation_request) {
                // Looks like we probably need more
                size_t memory_size = Memory::page_round_up(decltype(m_global_heap.m_heap)::calculate_memory_for_bytes(allocation_request));
                // Add some more to the new heap. We're already using it for other
                // allocations not including the original allocation_request
                // that triggered heap expansion. If we don't allocate
                memory_size += 1 * MiB;
                region = MM.allocate_kernel_region(memory_size, "kmalloc subheap", Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow);
                if (region) {
                    dbgln("kmalloc: Adding even more memory to heap at {}, bytes: {}", region->vaddr(), region->size());

                    m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
                    m_global_heap.m_subheap_memory.append(region.release_nonnull());
                } else {
                    dbgln("kmalloc: Could not expand heap to satisfy allocation of {} bytes", allocation_request);
                    return false;
                }
            }
            return true;
        }

        bool remove_memory(void* memory)
        {
            // This is actually relatively unlikely to happen, because it requires that all
            // allocated memory in a subheap to be freed. Only then the subheap can be removed...
            for (size_t i = 0; i < m_global_heap.m_subheap_memory.size(); i++) {
                if (m_global_heap.m_subheap_memory[i].vaddr().as_ptr() == memory) {
                    auto region = m_global_heap.m_subheap_memory.take(i);
                    if (!m_global_heap.m_backup_memory) {
                        if constexpr (KMALLOC_DEBUG) {
                            dmesgln("kmalloc: Using removed memory as backup: {}, bytes: {}", region->vaddr(), region->size());
                        }
                        m_global_heap.m_backup_memory = move(region);
                    } else {
                        if constexpr (KMALLOC_DEBUG) {
                            dmesgln("kmalloc: Queue removing memory from heap at {}, bytes: {}", region->vaddr(), region->size());
                        }
                        Processor::deferred_call_queue([this, region = move(region)]() mutable {
                            // We need to defer freeing the region to prevent a potential
                            // deadlock since we are still holding the kmalloc lock
                            // We don't really need to do anything other than holding
                            // onto the region. Unless we already used the backup
                            // memory, in which case we want to use the region as the
                            // new backup.
                            SpinlockLocker lock(s_lock);
                            if (!m_global_heap.m_backup_memory) {
                                if constexpr (KMALLOC_DEBUG) {
                                    dmesgln("kmalloc: Queued memory region at {}, bytes: {} will be used as new backup", region->vaddr(), region->size());
                                }
                                m_global_heap.m_backup_memory = move(region);
                            } else {
                                if constexpr (KMALLOC_DEBUG) {
                                    dmesgln("kmalloc: Queued memory region at {}, bytes: {} will be freed now", region->vaddr(), region->size());
                                }
                            }
                        });
                    }
                    return true;
                }
            }

            if constexpr (KMALLOC_DEBUG) {
                dmesgln("kmalloc: Cannot remove memory from heap: {}", VirtualAddress(memory));
            }
            return false;
        }
    };
    using HeapType = ExpandableHeap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE, ExpandGlobalHeap>;

    HeapType m_heap;
    NonnullOwnPtrVector<Memory::Region> m_subheap_memory;
    OwnPtr<Memory::Region> m_backup_memory;

    KmallocGlobalHeap(u8* memory, size_t memory_size)
        : m_heap(memory, memory_size, ExpandGlobalHeap(*this))
    {
    }
    void allocate_backup_memory()
    {
        if (m_backup_memory)
            return;
        m_backup_memory = MM.allocate_kernel_region(1 * MiB, "kmalloc subheap", Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow);
    }

    size_t backup_memory_bytes() const
    {
        return m_backup_memory ? m_backup_memory->size() : 0;
    }
};

READONLY_AFTER_INIT static KmallocGlobalHeap* g_kmalloc_global;
alignas(KmallocGlobalHeap) static u8 g_kmalloc_global_heap[sizeof(KmallocGlobalHeap)];

// Treat the heap as logically separate from .bss
__attribute__((section(".heap"))) static u8 kmalloc_eternal_heap[ETERNAL_RANGE_SIZE];
__attribute__((section(".heap"))) static u8 kmalloc_pool_heap[POOL_SIZE];

static size_t g_kmalloc_bytes_eternal = 0;
static size_t g_kmalloc_call_count;
static size_t g_kfree_call_count;
static size_t g_nested_kfree_calls;
bool g_dump_kmalloc_stacks;

static u8* s_next_eternal_ptr;
READONLY_AFTER_INIT static u8* s_end_of_eternal_range;

static void kmalloc_allocate_backup_memory()
{
    g_kmalloc_global->allocate_backup_memory();
}

void kmalloc_enable_expand()
{
    g_kmalloc_global->allocate_backup_memory();
}

static inline void kmalloc_verify_nospinlock_held()
{
    // Catch bad callers allocating under spinlock.
    if constexpr (KMALLOC_VERIFY_NO_SPINLOCK_HELD) {
        VERIFY(!Processor::in_critical());
    }
}

UNMAP_AFTER_INIT void kmalloc_init()
{
    // Zero out heap since it's placed after end_of_kernel_bss.
    memset(kmalloc_eternal_heap, 0, sizeof(kmalloc_eternal_heap));
    memset(kmalloc_pool_heap, 0, sizeof(kmalloc_pool_heap));
    g_kmalloc_global = new (g_kmalloc_global_heap) KmallocGlobalHeap(kmalloc_pool_heap, sizeof(kmalloc_pool_heap));

    s_lock.initialize();

    s_next_eternal_ptr = kmalloc_eternal_heap;
    s_end_of_eternal_range = s_next_eternal_ptr + sizeof(kmalloc_eternal_heap);
}

void* kmalloc_eternal(size_t size)
{
    kmalloc_verify_nospinlock_held();

    size = round_up_to_power_of_two(size, sizeof(void*));

    SpinlockLocker lock(s_lock);
    void* ptr = s_next_eternal_ptr;
    s_next_eternal_ptr += size;
    VERIFY(s_next_eternal_ptr < s_end_of_eternal_range);
    g_kmalloc_bytes_eternal += size;
    return ptr;
}

void* kmalloc(size_t size)
{
    kmalloc_verify_nospinlock_held();
    SpinlockLocker lock(s_lock);
    ++g_kmalloc_call_count;

    if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
        dbgln("kmalloc({})", size);
        Kernel::dump_backtrace();
    }

    void* ptr = g_kmalloc_global->m_heap.allocate(size);

    Thread* current_thread = Thread::current();
    if (!current_thread)
        current_thread = Processor::idle_thread();
    if (current_thread)
        PerformanceManager::add_kmalloc_perf_event(*current_thread, size, (FlatPtr)ptr);

    return ptr;
}

void kfree_sized(void* ptr, size_t size)
{
    (void)size;
    return kfree(ptr);
}

void kfree(void* ptr)
{
    if (!ptr)
        return;

    kmalloc_verify_nospinlock_held();
    SpinlockLocker lock(s_lock);
    ++g_kfree_call_count;
    ++g_nested_kfree_calls;

    if (g_nested_kfree_calls == 1) {
        Thread* current_thread = Thread::current();
        if (!current_thread)
            current_thread = Processor::idle_thread();
        if (current_thread)
            PerformanceManager::add_kfree_perf_event(*current_thread, 0, (FlatPtr)ptr);
    }

    g_kmalloc_global->m_heap.deallocate(ptr);
    --g_nested_kfree_calls;
}

size_t kmalloc_good_size(size_t size)
{
    return size;
}

[[gnu::malloc, gnu::alloc_size(1), gnu::alloc_align(2)]] static void* kmalloc_aligned_cxx(size_t size, size_t alignment)
{
    VERIFY(alignment <= 4096);
    void* ptr = kmalloc(size + alignment + sizeof(ptrdiff_t));
    if (ptr == nullptr)
        return nullptr;
    size_t max_addr = (size_t)ptr + alignment;
    void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
    ((ptrdiff_t*)aligned_ptr)[-1] = (ptrdiff_t)((u8*)aligned_ptr - (u8*)ptr);
    return aligned_ptr;
}

void* operator new(size_t size)
{
    void* ptr = kmalloc(size);
    VERIFY(ptr);
    return ptr;
}

void* operator new(size_t size, const std::nothrow_t&) noexcept
{
    return kmalloc(size);
}

void* operator new(size_t size, std::align_val_t al)
{
    void* ptr = kmalloc_aligned_cxx(size, (size_t)al);
    VERIFY(ptr);
    return ptr;
}

void* operator new(size_t size, std::align_val_t al, const std::nothrow_t&) noexcept
{
    return kmalloc_aligned_cxx(size, (size_t)al);
}

void* operator new[](size_t size)
{
    void* ptr = kmalloc(size);
    VERIFY(ptr);
    return ptr;
}

void* operator new[](size_t size, const std::nothrow_t&) noexcept
{
    return kmalloc(size);
}

void operator delete(void*) noexcept
{
    // All deletes in kernel code should have a known size.
    VERIFY_NOT_REACHED();
}

void operator delete(void* ptr, size_t size) noexcept
{
    return kfree_sized(ptr, size);
}

void operator delete(void* ptr, size_t, std::align_val_t) noexcept
{
    return kfree_aligned(ptr);
}

void operator delete[](void*) noexcept
{
    // All deletes in kernel code should have a known size.
    VERIFY_NOT_REACHED();
}

void operator delete[](void* ptr, size_t size) noexcept
{
    return kfree_sized(ptr, size);
}

void get_kmalloc_stats(kmalloc_stats& stats)
{
    SpinlockLocker lock(s_lock);
    stats.bytes_allocated = g_kmalloc_global->m_heap.allocated_bytes();
    stats.bytes_free = g_kmalloc_global->m_heap.free_bytes() + g_kmalloc_global->backup_memory_bytes();
    stats.bytes_eternal = g_kmalloc_bytes_eternal;
    stats.kmalloc_call_count = g_kmalloc_call_count;
    stats.kfree_call_count = g_kfree_call_count;
}