summaryrefslogtreecommitdiff
path: root/Kernel/Heap/kmalloc.cpp
blob: 19113958b0482aaa3135c4ccf58f037ccf1d50d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Really really *really* Q&D malloc() and free() implementations
 * just to get going. Don't ever let anyone see this shit. :^)
 */

#include <AK/Assertions.h>
#include <AK/NonnullOwnPtrVector.h>
#include <AK/Optional.h>
#include <AK/StringView.h>
#include <AK/Types.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Heap/Heap.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KSyms.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
#include <Kernel/SpinLock.h>
#include <Kernel/StdLib.h>
#include <Kernel/VM/MemoryManager.h>

#define SANITIZE_KMALLOC

#define CHUNK_SIZE 32
#define POOL_SIZE (2 * MiB)
#define ETERNAL_RANGE_SIZE (2 * MiB)

struct KmallocGlobalHeap {
    struct ExpandGlobalHeap {
        KmallocGlobalHeap& m_global_heap;

        ExpandGlobalHeap(KmallocGlobalHeap& global_heap)
            : m_global_heap(global_heap)
        {
        }

        bool m_adding { false };
        bool add_memory(size_t allocation_request)
        {
            if (!MemoryManager::is_initialized()) {
                klog() << "kmalloc(): Cannot expand heap before MM is initialized!";
                return false;
            }
            ASSERT(!m_adding);
            TemporaryChange change(m_adding, true);
            // At this point we have very little memory left. Any attempt to
            // kmalloc() could fail, so use our backup memory first, so we
            // can't really reliably allocate even a new region of memory.
            // This is why we keep a backup region, which we can
            auto region = move(m_global_heap.m_backup_memory);
            if (!region) {
                // Be careful to not log too much here. We don't want to trigger
                // any further calls to kmalloc(). We're already out of memory
                // and don't have any backup memory, either!
                klog() << "kmalloc(): Cannot expand heap: no backup memory";
                return false;
            }

            // At this point we should have at least enough memory from the
            // backup region to be able to log properly
            klog() << "kmalloc(): Adding memory to heap at " << region->vaddr() << ", bytes: " << region->size();

            auto& subheap = m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
            m_global_heap.m_subheap_memory.append(region.release_nonnull());

            // Since we pulled in our backup heap, make sure we allocate another
            // backup heap before returning. Otherwise we potentially lose
            // the ability to expand the heap next time we get called.
            ScopeGuard guard([&]() {
                m_global_heap.allocate_backup_memory();
            });

            // Now that we added our backup memory, check if the backup heap
            // was big enough to likely satisfy the request
            if (subheap.free_bytes() < allocation_request) {
                // Looks like we probably need more
                size_t memory_size = PAGE_ROUND_UP(decltype(m_global_heap.m_heap)::calculate_memory_for_bytes(allocation_request));
                // Add some more to the new heap. We're already using it for other
                // allocations not including the original allocation_request
                // that triggered heap expansion. If we don't allocate
                memory_size += 1 * MiB;
                region = MM.allocate_kernel_region(memory_size, "kmalloc subheap", Region::Access::Read | Region::Access::Write);
                if (region) {
                    klog() << "kmalloc(): Adding even more memory to heap at " << region->vaddr() << ", bytes: " << region->size();

                    m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
                    m_global_heap.m_subheap_memory.append(region.release_nonnull());
                } else {
                    klog() << "kmalloc(): Could not expand heap to satisfy allocation of " << allocation_request << " bytes";
                    return false;
                }
            }
            return true;
        }

        bool remove_memory(void* memory)
        {
            // This is actually relatively unlikely to happen, because it requires that all
            // allocated memory in a subheap to be freed. Only then the subheap can be removed...
            for (size_t i = 0; i < m_global_heap.m_subheap_memory.size(); i++) {
                if (m_global_heap.m_subheap_memory[i].vaddr().as_ptr() == memory) {
                    auto region = m_global_heap.m_subheap_memory.take(i);
                    klog() << "kmalloc(): Removing memory from heap at " << region->vaddr() << ", bytes: " << region->size();
                    if (!m_global_heap.m_backup_memory) {
                        klog() << "kmalloc(): Using removed memory as backup: " << region->vaddr() << ", bytes: " << region->size();
                        m_global_heap.m_backup_memory = move(region);
                    }
                    return true;
                }
            }

            klog() << "kmalloc(): Cannot remove memory from heap: " << VirtualAddress(memory);
            return false;
        }
    };
    typedef ExpandableHeap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE, ExpandGlobalHeap> HeapType;

    HeapType m_heap;
    NonnullOwnPtrVector<Region> m_subheap_memory;
    OwnPtr<Region> m_backup_memory;

    KmallocGlobalHeap(u8* memory, size_t memory_size)
        : m_heap(memory, memory_size, ExpandGlobalHeap(*this))
    {
    }
    void allocate_backup_memory()
    {
        if (m_backup_memory)
            return;
        m_backup_memory = MM.allocate_kernel_region(1 * MiB, "kmalloc subheap", Region::Access::Read | Region::Access::Write);
    }

    size_t backup_memory_bytes() const
    {
        return m_backup_memory ? m_backup_memory->size() : 0;
    }
};

static KmallocGlobalHeap* g_kmalloc_global;

// We need to make sure to not stomp on global variables or other parts
// of the kernel image!
extern u32 end_of_kernel_image;
u8* const kmalloc_start = (u8*)PAGE_ROUND_UP(&end_of_kernel_image);
u8* const kmalloc_end = kmalloc_start + (ETERNAL_RANGE_SIZE + POOL_SIZE) + sizeof(KmallocGlobalHeap);
#define ETERNAL_BASE (kmalloc_start + sizeof(KmallocGlobalHeap))
#define KMALLOC_BASE (ETERNAL_BASE + ETERNAL_RANGE_SIZE)

static size_t g_kmalloc_bytes_eternal = 0;
static size_t g_kmalloc_call_count;
static size_t g_kfree_call_count;
bool g_dump_kmalloc_stacks;

static u8* s_next_eternal_ptr;
static u8* s_end_of_eternal_range;

static RecursiveSpinLock s_lock; // needs to be recursive because of dump_backtrace()

void kmalloc_enable_expand()
{
    g_kmalloc_global->allocate_backup_memory();
}

void kmalloc_init()
{
    memset((void*)KMALLOC_BASE, 0, POOL_SIZE);
    g_kmalloc_global = new (kmalloc_start) KmallocGlobalHeap(KMALLOC_BASE, POOL_SIZE); // Place heap at kmalloc_start

    s_lock.initialize();

    s_next_eternal_ptr = (u8*)ETERNAL_BASE;
    s_end_of_eternal_range = s_next_eternal_ptr + ETERNAL_RANGE_SIZE;
}

void* kmalloc_eternal(size_t size)
{
    ScopedSpinLock lock(s_lock);
    void* ptr = s_next_eternal_ptr;
    s_next_eternal_ptr += size;
    ASSERT(s_next_eternal_ptr < s_end_of_eternal_range);
    g_kmalloc_bytes_eternal += size;
    return ptr;
}

void* kmalloc_impl(size_t size)
{
    ScopedSpinLock lock(s_lock);
    ++g_kmalloc_call_count;

    if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
        dbg() << "kmalloc(" << size << ")";
        Kernel::dump_backtrace();
    }

    void* ptr = g_kmalloc_global->m_heap.allocate(size);
    if (!ptr) {
        klog() << "kmalloc(): PANIC! Out of memory (no suitable block for size " << size << ")";
        Kernel::dump_backtrace();
        Processor::halt();
    }

    return ptr;
}

void kfree(void* ptr)
{
    if (!ptr)
        return;

    ScopedSpinLock lock(s_lock);
    ++g_kfree_call_count;

    g_kmalloc_global->m_heap.deallocate(ptr);
}

void* krealloc(void* ptr, size_t new_size)
{
    ScopedSpinLock lock(s_lock);
    return g_kmalloc_global->m_heap.reallocate(ptr, new_size);
}

void* operator new(size_t size)
{
    return kmalloc(size);
}

void* operator new[](size_t size)
{
    return kmalloc(size);
}

void get_kmalloc_stats(kmalloc_stats& stats)
{
    ScopedSpinLock lock(s_lock);
    stats.bytes_allocated = g_kmalloc_global->m_heap.allocated_bytes();
    stats.bytes_free = g_kmalloc_global->m_heap.free_bytes() + g_kmalloc_global->backup_memory_bytes();
    stats.bytes_eternal = g_kmalloc_bytes_eternal;
    stats.kmalloc_call_count = g_kmalloc_call_count;
    stats.kfree_call_count = g_kfree_call_count;
}