1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
|
/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Bitmap.h>
#include <AK/ScopeGuard.h>
#include <AK/TemporaryChange.h>
#include <AK/Vector.h>
#include <AK/kmalloc.h>
namespace Kernel {
template<size_t CHUNK_SIZE, unsigned HEAP_SCRUB_BYTE_ALLOC = 0, unsigned HEAP_SCRUB_BYTE_FREE = 0>
class Heap {
AK_MAKE_NONCOPYABLE(Heap);
struct AllocationHeader {
size_t allocation_size_in_chunks;
#if ARCH(X86_64)
// FIXME: Get rid of this somehow
size_t alignment_dummy;
#endif
u8 data[0];
};
static_assert(CHUNK_SIZE >= sizeof(AllocationHeader));
ALWAYS_INLINE AllocationHeader* allocation_header(void* ptr)
{
return (AllocationHeader*)((((u8*)ptr) - sizeof(AllocationHeader)));
}
ALWAYS_INLINE const AllocationHeader* allocation_header(const void* ptr) const
{
return (const AllocationHeader*)((((const u8*)ptr) - sizeof(AllocationHeader)));
}
static size_t calculate_chunks(size_t memory_size)
{
return (sizeof(u8) * memory_size) / (sizeof(u8) * CHUNK_SIZE + 1);
}
public:
Heap(u8* memory, size_t memory_size)
: m_total_chunks(calculate_chunks(memory_size))
, m_chunks(memory)
, m_bitmap(memory + m_total_chunks * CHUNK_SIZE, m_total_chunks)
{
// To keep the alignment of the memory passed in, place the bitmap
// at the end of the memory block.
VERIFY(m_total_chunks * CHUNK_SIZE + (m_total_chunks + 7) / 8 <= memory_size);
}
~Heap() = default;
static size_t calculate_memory_for_bytes(size_t bytes)
{
size_t needed_chunks = (sizeof(AllocationHeader) + bytes + CHUNK_SIZE - 1) / CHUNK_SIZE;
return needed_chunks * CHUNK_SIZE + (needed_chunks + 7) / 8;
}
void* allocate(size_t size)
{
// We need space for the AllocationHeader at the head of the block.
size_t real_size = size + sizeof(AllocationHeader);
size_t chunks_needed = (real_size + CHUNK_SIZE - 1) / CHUNK_SIZE;
if (chunks_needed > free_chunks())
return nullptr;
Optional<size_t> first_chunk;
// Choose the right policy for allocation.
constexpr u32 best_fit_threshold = 128;
if (chunks_needed < best_fit_threshold) {
first_chunk = m_bitmap.find_first_fit(chunks_needed);
} else {
first_chunk = m_bitmap.find_best_fit(chunks_needed);
}
if (!first_chunk.has_value())
return nullptr;
auto* a = (AllocationHeader*)(m_chunks + (first_chunk.value() * CHUNK_SIZE));
u8* ptr = a->data;
a->allocation_size_in_chunks = chunks_needed;
m_bitmap.set_range_and_verify_that_all_bits_flip(first_chunk.value(), chunks_needed, true);
m_allocated_chunks += chunks_needed;
if constexpr (HEAP_SCRUB_BYTE_ALLOC != 0) {
__builtin_memset(ptr, HEAP_SCRUB_BYTE_ALLOC, (chunks_needed * CHUNK_SIZE) - sizeof(AllocationHeader));
}
return ptr;
}
void deallocate(void* ptr)
{
if (!ptr)
return;
auto* a = allocation_header(ptr);
VERIFY((u8*)a >= m_chunks && (u8*)ptr < m_chunks + m_total_chunks * CHUNK_SIZE);
FlatPtr start = ((FlatPtr)a - (FlatPtr)m_chunks) / CHUNK_SIZE;
// First, verify that the start of the allocation at `ptr` is actually allocated.
VERIFY(m_bitmap.get(start));
VERIFY((u8*)a + a->allocation_size_in_chunks * CHUNK_SIZE <= m_chunks + m_total_chunks * CHUNK_SIZE);
m_bitmap.set_range_and_verify_that_all_bits_flip(start, a->allocation_size_in_chunks, false);
VERIFY(m_allocated_chunks >= a->allocation_size_in_chunks);
m_allocated_chunks -= a->allocation_size_in_chunks;
if constexpr (HEAP_SCRUB_BYTE_FREE != 0) {
__builtin_memset(a, HEAP_SCRUB_BYTE_FREE, a->allocation_size_in_chunks * CHUNK_SIZE);
}
}
template<typename MainHeap>
void* reallocate(void* ptr, size_t new_size, MainHeap& h)
{
if (!ptr)
return h.allocate(new_size);
auto* a = allocation_header(ptr);
VERIFY((u8*)a >= m_chunks && (u8*)ptr < m_chunks + m_total_chunks * CHUNK_SIZE);
VERIFY((u8*)a + a->allocation_size_in_chunks * CHUNK_SIZE <= m_chunks + m_total_chunks * CHUNK_SIZE);
size_t old_size = a->allocation_size_in_chunks * CHUNK_SIZE - sizeof(AllocationHeader);
if (old_size == new_size)
return ptr;
auto* new_ptr = h.allocate(new_size);
if (new_ptr) {
__builtin_memcpy(new_ptr, ptr, min(old_size, new_size));
deallocate(ptr);
}
return new_ptr;
}
void* reallocate(void* ptr, size_t new_size)
{
return reallocate(ptr, new_size, *this);
}
bool contains(const void* ptr) const
{
const auto* a = allocation_header(ptr);
if ((const u8*)a < m_chunks)
return false;
if ((const u8*)ptr >= m_chunks + m_total_chunks * CHUNK_SIZE)
return false;
return true;
}
u8* memory() const { return m_chunks; }
size_t total_chunks() const { return m_total_chunks; }
size_t total_bytes() const { return m_total_chunks * CHUNK_SIZE; }
size_t free_chunks() const { return m_total_chunks - m_allocated_chunks; };
size_t free_bytes() const { return free_chunks() * CHUNK_SIZE; }
size_t allocated_chunks() const { return m_allocated_chunks; }
size_t allocated_bytes() const { return m_allocated_chunks * CHUNK_SIZE; }
private:
size_t m_total_chunks { 0 };
size_t m_allocated_chunks { 0 };
u8* m_chunks { nullptr };
Bitmap m_bitmap;
};
template<typename ExpandHeap>
struct ExpandableHeapTraits {
static bool add_memory(ExpandHeap& expand, size_t allocation_request)
{
return expand.add_memory(allocation_request);
}
static bool remove_memory(ExpandHeap& expand, void* memory)
{
return expand.remove_memory(memory);
}
};
struct DefaultExpandHeap {
bool add_memory(size_t)
{
// Requires explicit implementation
return false;
}
bool remove_memory(void*)
{
return false;
}
};
template<size_t CHUNK_SIZE, unsigned HEAP_SCRUB_BYTE_ALLOC = 0, unsigned HEAP_SCRUB_BYTE_FREE = 0, typename ExpandHeap = DefaultExpandHeap>
class ExpandableHeap {
AK_MAKE_NONCOPYABLE(ExpandableHeap);
AK_MAKE_NONMOVABLE(ExpandableHeap);
public:
typedef ExpandHeap ExpandHeapType;
typedef Heap<CHUNK_SIZE, HEAP_SCRUB_BYTE_ALLOC, HEAP_SCRUB_BYTE_FREE> HeapType;
struct SubHeap {
HeapType heap;
SubHeap* next { nullptr };
size_t memory_size { 0 };
template<typename... Args>
SubHeap(size_t memory_size, Args&&... args)
: heap(forward<Args>(args)...)
, memory_size(memory_size)
{
}
};
ExpandableHeap(u8* memory, size_t memory_size, const ExpandHeapType& expand = ExpandHeapType())
: m_heaps(memory_size, memory, memory_size)
, m_expand(expand)
{
}
~ExpandableHeap()
{
// We don't own the main heap, only remove memory that we added previously
SubHeap* next;
for (auto* heap = m_heaps.next; heap; heap = next) {
next = heap->next;
heap->~SubHeap();
ExpandableHeapTraits<ExpandHeap>::remove_memory(m_expand, (void*)heap);
}
}
static size_t calculate_memory_for_bytes(size_t bytes)
{
return sizeof(SubHeap) + HeapType::calculate_memory_for_bytes(bytes);
}
bool expand_memory(size_t size)
{
if (m_expanding)
return false;
// Allocating more memory itself may trigger allocations and deallocations
// on this heap. We need to prevent recursive expansion. We also disable
// removing memory while trying to expand the heap.
TemporaryChange change(m_expanding, true);
return ExpandableHeapTraits<ExpandHeap>::add_memory(m_expand, size);
}
void* allocate(size_t size)
{
int attempt = 0;
do {
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next) {
if (void* ptr = subheap->heap.allocate(size))
return ptr;
}
// We need to loop because we won't know how much memory was added.
// Even though we make a best guess how much memory needs to be added,
// it doesn't guarantee that enough will be available after adding it.
// This is especially true for the kmalloc heap, where adding memory
// requires several other objects to be allocated just to be able to
// expand the heap.
// To avoid an infinite expansion loop, limit to two attempts
if (attempt++ >= 2)
break;
} while (expand_memory(size));
return nullptr;
}
void deallocate(void* ptr)
{
if (!ptr)
return;
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next) {
if (subheap->heap.contains(ptr)) {
subheap->heap.deallocate(ptr);
if (subheap->heap.allocated_chunks() == 0 && subheap != &m_heaps && !m_expanding) {
// remove_memory expects the memory to be unused and
// may deallocate the memory. We need to therefore first
// unlink the subheap and destroy it. If remove_memory
// ends up not not removing the memory, we'll initialize
// a new subheap and re-add it.
// We need to remove the subheap before calling remove_memory
// because it's possible that remove_memory itself could
// cause a memory allocation that we don't want to end up
// potentially being made in the subheap we're about to remove.
{
auto* subheap2 = m_heaps.next;
auto** subheap_link = &m_heaps.next;
while (subheap2 != subheap) {
subheap_link = &subheap2->next;
subheap2 = subheap2->next;
}
*subheap_link = subheap->next;
}
auto memory_size = subheap->memory_size;
subheap->~SubHeap();
if (!ExpandableHeapTraits<ExpandHeap>::remove_memory(m_expand, subheap)) {
// Removal of the subheap was rejected, add it back in and
// re-initialize with a clean subheap.
add_subheap(subheap, memory_size);
}
}
return;
}
}
VERIFY_NOT_REACHED();
}
void* reallocate(void* ptr, size_t new_size)
{
if (!ptr)
return allocate(new_size);
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next) {
if (subheap->heap.contains(ptr))
return subheap->heap.reallocate(ptr, new_size, *this);
}
VERIFY_NOT_REACHED();
}
HeapType& add_subheap(void* memory, size_t memory_size)
{
VERIFY(memory_size > sizeof(SubHeap));
// Place the SubHeap structure at the beginning of the new memory block
memory_size -= sizeof(SubHeap);
SubHeap* new_heap = (SubHeap*)memory;
new (new_heap) SubHeap(memory_size, (u8*)(new_heap + 1), memory_size);
// Add the subheap to the list (but leave the main heap where it is)
SubHeap* next_heap = m_heaps.next;
SubHeap** next_heap_link = &m_heaps.next;
while (next_heap) {
if (new_heap->heap.memory() < next_heap->heap.memory())
break;
next_heap_link = &next_heap->next;
next_heap = next_heap->next;
}
new_heap->next = *next_heap_link;
*next_heap_link = new_heap;
return new_heap->heap;
}
bool contains(const void* ptr) const
{
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next) {
if (subheap->heap.contains(ptr))
return true;
}
return false;
}
size_t total_chunks() const
{
size_t total = 0;
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next)
total += subheap->heap.total_chunks();
return total;
}
size_t total_bytes() const { return total_chunks() * CHUNK_SIZE; }
size_t free_chunks() const
{
size_t total = 0;
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next)
total += subheap->heap.free_chunks();
return total;
}
size_t free_bytes() const { return free_chunks() * CHUNK_SIZE; }
size_t allocated_chunks() const
{
size_t total = 0;
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next)
total += subheap->heap.allocated_chunks();
return total;
}
size_t allocated_bytes() const { return allocated_chunks() * CHUNK_SIZE; }
private:
SubHeap m_heaps;
ExpandHeap m_expand;
bool m_expanding { false };
};
}
|