summaryrefslogtreecommitdiff
path: root/Kernel/Heap/Heap.h
blob: 775bd86857eca7a5b4d0dde3144f105ecb7c1d90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
 * Copyright (c) 2020, the SerenityOS developers.
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Bitmap.h>
#include <AK/ScopeGuard.h>
#include <AK/TemporaryChange.h>
#include <AK/Vector.h>
#include <AK/kmalloc.h>

namespace Kernel {

enum class CallerWillInitializeMemory {
    No,
    Yes,
};

template<size_t CHUNK_SIZE, unsigned HEAP_SCRUB_BYTE_ALLOC = 0, unsigned HEAP_SCRUB_BYTE_FREE = 0>
class Heap {
    AK_MAKE_NONCOPYABLE(Heap);

    struct AllocationHeader {
        size_t allocation_size_in_chunks;
#if ARCH(X86_64) || ARCH(AARCH64)
        // FIXME: Get rid of this somehow
        size_t alignment_dummy;
#endif
        u8 data[0];
    };

    static_assert(CHUNK_SIZE >= sizeof(AllocationHeader));

    ALWAYS_INLINE AllocationHeader* allocation_header(void* ptr)
    {
        return (AllocationHeader*)((((u8*)ptr) - sizeof(AllocationHeader)));
    }
    ALWAYS_INLINE AllocationHeader const* allocation_header(void const* ptr) const
    {
        return (AllocationHeader const*)((((u8 const*)ptr) - sizeof(AllocationHeader)));
    }

    static size_t calculate_chunks(size_t memory_size)
    {
        return (sizeof(u8) * memory_size) / (sizeof(u8) * CHUNK_SIZE + 1);
    }

public:
    static constexpr size_t AllocationHeaderSize = sizeof(AllocationHeader);

    Heap(u8* memory, size_t memory_size)
        : m_total_chunks(calculate_chunks(memory_size))
        , m_chunks(memory)
        , m_bitmap(memory + m_total_chunks * CHUNK_SIZE, m_total_chunks)
    {
        // To keep the alignment of the memory passed in, place the bitmap
        // at the end of the memory block.
        VERIFY(m_total_chunks * CHUNK_SIZE + (m_total_chunks + 7) / 8 <= memory_size);
    }
    ~Heap() = default;

    static size_t calculate_memory_for_bytes(size_t bytes)
    {
        size_t needed_chunks = (sizeof(AllocationHeader) + bytes + CHUNK_SIZE - 1) / CHUNK_SIZE;
        return needed_chunks * CHUNK_SIZE + (needed_chunks + 7) / 8;
    }

    void* allocate(size_t size, size_t alignment, CallerWillInitializeMemory caller_will_initialize_memory)
    {
        // The minimum possible alignment is CHUNK_SIZE, since we only track chunks here, nothing smaller.
        if (alignment < CHUNK_SIZE)
            alignment = CHUNK_SIZE;

        // We need space for the AllocationHeader at the head of the block.
        size_t real_size = size + sizeof(AllocationHeader);
        size_t chunks_needed = (real_size + CHUNK_SIZE - 1) / CHUNK_SIZE;
        size_t chunk_alignment = (alignment + CHUNK_SIZE - 1) / CHUNK_SIZE;

        if (chunks_needed > free_chunks())
            return nullptr;

        Optional<size_t> first_chunk;

        // Choose the right policy for allocation.
        // FIXME: These should utilize the alignment directly instead of trying to allocate `size + alignment`.
        constexpr u32 best_fit_threshold = 128;
        if (chunks_needed < best_fit_threshold) {
            first_chunk = m_bitmap.find_first_fit(chunks_needed + chunk_alignment);
        } else {
            first_chunk = m_bitmap.find_best_fit(chunks_needed + chunk_alignment);
        }

        if (!first_chunk.has_value())
            return nullptr;

        auto* a = (AllocationHeader*)(m_chunks + (first_chunk.value() * CHUNK_SIZE));

        // Align the starting address and verify that we haven't gone outside the calculated free area.
        a = (AllocationHeader*)((FlatPtr)a + alignment - (FlatPtr)a->data % alignment);
        auto aligned_first_chunk = ((FlatPtr)a - (FlatPtr)m_chunks) / CHUNK_SIZE;
        VERIFY(first_chunk.value() <= aligned_first_chunk);
        VERIFY(aligned_first_chunk + chunks_needed <= first_chunk.value() + chunks_needed + chunk_alignment);

        u8* ptr = a->data;
        a->allocation_size_in_chunks = chunks_needed;

        m_bitmap.set_range_and_verify_that_all_bits_flip(aligned_first_chunk, chunks_needed, true);

        m_allocated_chunks += chunks_needed;
        if (caller_will_initialize_memory == CallerWillInitializeMemory::No) {
            if constexpr (HEAP_SCRUB_BYTE_ALLOC != 0) {
                __builtin_memset(ptr, HEAP_SCRUB_BYTE_ALLOC, (chunks_needed * CHUNK_SIZE) - sizeof(AllocationHeader));
            }
        }

        VERIFY((FlatPtr)ptr % alignment == 0);
        return ptr;
    }

    void deallocate(void* ptr)
    {
        if (!ptr)
            return;
        auto* a = allocation_header(ptr);
        VERIFY((u8*)a >= m_chunks && (u8*)ptr < m_chunks + m_total_chunks * CHUNK_SIZE);
        FlatPtr start = ((FlatPtr)a - (FlatPtr)m_chunks) / CHUNK_SIZE;

        // First, verify that the start of the allocation at `ptr` is actually allocated.
        VERIFY(m_bitmap.get(start));

        VERIFY((u8*)a + a->allocation_size_in_chunks * CHUNK_SIZE <= m_chunks + m_total_chunks * CHUNK_SIZE);
        m_bitmap.set_range_and_verify_that_all_bits_flip(start, a->allocation_size_in_chunks, false);

        VERIFY(m_allocated_chunks >= a->allocation_size_in_chunks);
        m_allocated_chunks -= a->allocation_size_in_chunks;

        if constexpr (HEAP_SCRUB_BYTE_FREE != 0) {
            __builtin_memset(a, HEAP_SCRUB_BYTE_FREE, a->allocation_size_in_chunks * CHUNK_SIZE);
        }
    }

    bool contains(void const* ptr) const
    {
        auto const* a = allocation_header(ptr);
        if ((u8 const*)a < m_chunks)
            return false;
        if ((u8 const*)ptr >= m_chunks + m_total_chunks * CHUNK_SIZE)
            return false;
        return true;
    }

    u8* memory() const { return m_chunks; }

    size_t total_chunks() const { return m_total_chunks; }
    size_t total_bytes() const { return m_total_chunks * CHUNK_SIZE; }
    size_t free_chunks() const { return m_total_chunks - m_allocated_chunks; };
    size_t free_bytes() const { return free_chunks() * CHUNK_SIZE; }
    size_t allocated_chunks() const { return m_allocated_chunks; }
    size_t allocated_bytes() const { return m_allocated_chunks * CHUNK_SIZE; }

private:
    size_t m_total_chunks { 0 };
    size_t m_allocated_chunks { 0 };
    u8* m_chunks { nullptr };
    Bitmap m_bitmap;
};

}