summaryrefslogtreecommitdiff
path: root/Kernel/FileSystem/Ext2FileSystem.cpp
blob: f50ba218499bf26a383cf3b5136dc69209cb5b3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 * Copyright (c) 2021, sin-ack <sin-ack@protonmail.com>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/HashMap.h>
#include <AK/MemoryStream.h>
#include <AK/StdLibExtras.h>
#include <AK/StringView.h>
#include <Kernel/Debug.h>
#include <Kernel/Devices/BlockDevice.h>
#include <Kernel/FileSystem/Ext2FileSystem.h>
#include <Kernel/FileSystem/OpenFileDescription.h>
#include <Kernel/FileSystem/ext2_fs.h>
#include <Kernel/Process.h>
#include <Kernel/UnixTypes.h>
#include <LibC/errno_numbers.h>

namespace Kernel {

static constexpr size_t max_block_size = 4096;
static constexpr size_t max_inline_symlink_length = 60;

struct Ext2FSDirectoryEntry {
    String name;
    InodeIndex inode_index { 0 };
    u8 file_type { 0 };
    u16 record_length { 0 };
};

static u8 to_ext2_file_type(mode_t mode)
{
    if (is_regular_file(mode))
        return EXT2_FT_REG_FILE;
    if (is_directory(mode))
        return EXT2_FT_DIR;
    if (is_character_device(mode))
        return EXT2_FT_CHRDEV;
    if (is_block_device(mode))
        return EXT2_FT_BLKDEV;
    if (is_fifo(mode))
        return EXT2_FT_FIFO;
    if (is_socket(mode))
        return EXT2_FT_SOCK;
    if (is_symlink(mode))
        return EXT2_FT_SYMLINK;
    return EXT2_FT_UNKNOWN;
}

static unsigned divide_rounded_up(unsigned a, unsigned b)
{
    return (a / b) + (a % b != 0);
}

KResultOr<NonnullRefPtr<Ext2FS>> Ext2FS::try_create(OpenFileDescription& file_description)
{
    return adopt_nonnull_ref_or_enomem(new (nothrow) Ext2FS(file_description));
}

Ext2FS::Ext2FS(OpenFileDescription& file_description)
    : BlockBasedFileSystem(file_description)
{
}

Ext2FS::~Ext2FS()
{
}

bool Ext2FS::flush_super_block()
{
    MutexLocker locker(m_lock);
    VERIFY((sizeof(ext2_super_block) % logical_block_size()) == 0);
    auto super_block_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&m_super_block);
    bool success = raw_write_blocks(2, (sizeof(ext2_super_block) / logical_block_size()), super_block_buffer);
    VERIFY(success);
    return true;
}

const ext2_group_desc& Ext2FS::group_descriptor(GroupIndex group_index) const
{
    // FIXME: Should this fail gracefully somehow?
    VERIFY(group_index <= m_block_group_count);
    VERIFY(group_index > 0);
    return block_group_descriptors()[group_index.value() - 1];
}

KResult Ext2FS::initialize()
{
    MutexLocker locker(m_lock);

    VERIFY((sizeof(ext2_super_block) % logical_block_size()) == 0);
    auto super_block_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&m_super_block);
    bool success = raw_read_blocks(2, (sizeof(ext2_super_block) / logical_block_size()), super_block_buffer);
    VERIFY(success);

    auto& super_block = this->super_block();
    if constexpr (EXT2_DEBUG) {
        dmesgln("Ext2FS: super block magic: {:04x} (super block size: {})", super_block.s_magic, sizeof(ext2_super_block));
    }
    if (super_block.s_magic != EXT2_SUPER_MAGIC) {
        dmesgln("Ext2FS: Bad super block magic");
        return EINVAL;
    }

    if constexpr (EXT2_DEBUG) {
        dmesgln("Ext2FS: {} inodes, {} blocks", super_block.s_inodes_count, super_block.s_blocks_count);
        dmesgln("Ext2FS: Block size: {}", EXT2_BLOCK_SIZE(&super_block));
        dmesgln("Ext2FS: First data block: {}", super_block.s_first_data_block);
        dmesgln("Ext2FS: Inodes per block: {}", inodes_per_block());
        dmesgln("Ext2FS: Inodes per group: {}", inodes_per_group());
        dmesgln("Ext2FS: Free inodes: {}", super_block.s_free_inodes_count);
        dmesgln("Ext2FS: Descriptors per block: {}", EXT2_DESC_PER_BLOCK(&super_block));
        dmesgln("Ext2FS: Descriptor size: {}", EXT2_DESC_SIZE(&super_block));
    }

    set_block_size(EXT2_BLOCK_SIZE(&super_block));
    set_fragment_size(EXT2_FRAG_SIZE(&super_block));

    // Note: This depends on the block size being available.
    TRY(BlockBasedFileSystem::initialize());

    VERIFY(block_size() <= (int)max_block_size);

    m_block_group_count = ceil_div(super_block.s_blocks_count, super_block.s_blocks_per_group);

    if (m_block_group_count == 0) {
        dmesgln("Ext2FS: no block groups :(");
        return EINVAL;
    }

    auto blocks_to_read = ceil_div(m_block_group_count * sizeof(ext2_group_desc), block_size());
    BlockIndex first_block_of_bgdt = block_size() == 1024 ? 2 : 1;
    m_cached_group_descriptor_table = TRY(KBuffer::try_create_with_size(block_size() * blocks_to_read, Memory::Region::Access::ReadWrite, "Ext2FS: Block group descriptors"));
    auto buffer = UserOrKernelBuffer::for_kernel_buffer(m_cached_group_descriptor_table->data());
    TRY(read_blocks(first_block_of_bgdt, blocks_to_read, buffer));

    if constexpr (EXT2_DEBUG) {
        for (unsigned i = 1; i <= m_block_group_count; ++i) {
            auto& group = group_descriptor(i);
            dbgln("Ext2FS: group[{}] ( block_bitmap: {}, inode_bitmap: {}, inode_table: {} )", i, group.bg_block_bitmap, group.bg_inode_bitmap, group.bg_inode_table);
        }
    }

    m_root_inode = static_ptr_cast<Ext2FSInode>(TRY(get_inode({ fsid(), EXT2_ROOT_INO })));
    return KSuccess;
}

Ext2FSInode& Ext2FS::root_inode()
{
    return *m_root_inode;
}

bool Ext2FS::find_block_containing_inode(InodeIndex inode, BlockIndex& block_index, unsigned& offset) const
{
    auto& super_block = this->super_block();

    if (inode != EXT2_ROOT_INO && inode < EXT2_FIRST_INO(&super_block))
        return false;

    if (inode > super_block.s_inodes_count)
        return false;

    auto& bgd = group_descriptor(group_index_from_inode(inode));

    u64 full_offset = ((inode.value() - 1) % inodes_per_group()) * inode_size();
    block_index = bgd.bg_inode_table + (full_offset >> EXT2_BLOCK_SIZE_BITS(&super_block));
    offset = full_offset & (block_size() - 1);

    return true;
}

Ext2FS::BlockListShape Ext2FS::compute_block_list_shape(unsigned blocks) const
{
    BlockListShape shape;
    const unsigned entries_per_block = EXT2_ADDR_PER_BLOCK(&super_block());
    unsigned blocks_remaining = blocks;

    shape.direct_blocks = min((unsigned)EXT2_NDIR_BLOCKS, blocks_remaining);
    blocks_remaining -= shape.direct_blocks;
    if (!blocks_remaining)
        return shape;

    shape.indirect_blocks = min(blocks_remaining, entries_per_block);
    shape.meta_blocks += 1;
    blocks_remaining -= shape.indirect_blocks;
    if (!blocks_remaining)
        return shape;

    shape.doubly_indirect_blocks = min(blocks_remaining, entries_per_block * entries_per_block);
    shape.meta_blocks += 1;
    shape.meta_blocks += divide_rounded_up(shape.doubly_indirect_blocks, entries_per_block);
    blocks_remaining -= shape.doubly_indirect_blocks;
    if (!blocks_remaining)
        return shape;

    shape.triply_indirect_blocks = min(blocks_remaining, entries_per_block * entries_per_block * entries_per_block);
    shape.meta_blocks += 1;
    shape.meta_blocks += divide_rounded_up(shape.triply_indirect_blocks, entries_per_block * entries_per_block);
    shape.meta_blocks += divide_rounded_up(shape.triply_indirect_blocks, entries_per_block);
    blocks_remaining -= shape.triply_indirect_blocks;
    VERIFY(blocks_remaining == 0);
    return shape;
}

KResult Ext2FSInode::write_indirect_block(BlockBasedFileSystem::BlockIndex block, Span<BlockBasedFileSystem::BlockIndex> blocks_indices)
{
    const auto entries_per_block = EXT2_ADDR_PER_BLOCK(&fs().super_block());
    VERIFY(blocks_indices.size() <= entries_per_block);

    auto block_contents_result = ByteBuffer::create_uninitialized(fs().block_size());
    if (!block_contents_result.has_value())
        return ENOMEM;
    auto block_contents = block_contents_result.release_value();
    OutputMemoryStream stream { block_contents };
    auto buffer = UserOrKernelBuffer::for_kernel_buffer(stream.data());

    VERIFY(blocks_indices.size() <= EXT2_ADDR_PER_BLOCK(&fs().super_block()));
    for (unsigned i = 0; i < blocks_indices.size(); ++i)
        stream << static_cast<u32>(blocks_indices[i].value());
    stream.fill_to_end(0);

    return fs().write_block(block, buffer, stream.size());
}

KResult Ext2FSInode::grow_doubly_indirect_block(BlockBasedFileSystem::BlockIndex block, size_t old_blocks_length, Span<BlockBasedFileSystem::BlockIndex> blocks_indices, Vector<Ext2FS::BlockIndex>& new_meta_blocks, unsigned& meta_blocks)
{
    const auto entries_per_block = EXT2_ADDR_PER_BLOCK(&fs().super_block());
    const auto entries_per_doubly_indirect_block = entries_per_block * entries_per_block;
    const auto old_indirect_blocks_length = divide_rounded_up(old_blocks_length, entries_per_block);
    const auto new_indirect_blocks_length = divide_rounded_up(blocks_indices.size(), entries_per_block);
    VERIFY(blocks_indices.size() > 0);
    VERIFY(blocks_indices.size() > old_blocks_length);
    VERIFY(blocks_indices.size() <= entries_per_doubly_indirect_block);

    auto block_contents_result = ByteBuffer::create_uninitialized(fs().block_size());
    if (!block_contents_result.has_value())
        return ENOMEM;
    auto block_contents = block_contents_result.release_value();
    auto* block_as_pointers = (unsigned*)block_contents.data();
    OutputMemoryStream stream { block_contents };
    auto buffer = UserOrKernelBuffer::for_kernel_buffer(stream.data());

    if (old_blocks_length > 0) {
        TRY(fs().read_block(block, &buffer, fs().block_size()));
    }

    // Grow the doubly indirect block.
    for (unsigned i = 0; i < old_indirect_blocks_length; i++)
        stream << static_cast<u32>(block_as_pointers[i]);
    for (unsigned i = old_indirect_blocks_length; i < new_indirect_blocks_length; i++) {
        auto new_block = new_meta_blocks.take_last().value();
        dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::grow_doubly_indirect_block(): Allocating indirect block {} at index {}", identifier(), new_block, i);
        stream << static_cast<u32>(new_block);
        meta_blocks++;
    }
    stream.fill_to_end(0);

    // Write out the indirect blocks.
    for (unsigned i = old_blocks_length / entries_per_block; i < new_indirect_blocks_length; i++) {
        const auto offset_block = i * entries_per_block;
        TRY(write_indirect_block(block_as_pointers[i], blocks_indices.slice(offset_block, min(blocks_indices.size() - offset_block, entries_per_block))));
    }

    // Write out the doubly indirect block.
    return fs().write_block(block, buffer, stream.size());
}

KResult Ext2FSInode::shrink_doubly_indirect_block(BlockBasedFileSystem::BlockIndex block, size_t old_blocks_length, size_t new_blocks_length, unsigned& meta_blocks)
{
    const auto entries_per_block = EXT2_ADDR_PER_BLOCK(&fs().super_block());
    const auto entries_per_doubly_indirect_block = entries_per_block * entries_per_block;
    const auto old_indirect_blocks_length = divide_rounded_up(old_blocks_length, entries_per_block);
    const auto new_indirect_blocks_length = divide_rounded_up(new_blocks_length, entries_per_block);
    VERIFY(old_blocks_length > 0);
    VERIFY(old_blocks_length >= new_blocks_length);
    VERIFY(new_blocks_length <= entries_per_doubly_indirect_block);

    auto block_contents_result = ByteBuffer::create_uninitialized(fs().block_size());
    if (!block_contents_result.has_value())
        return ENOMEM;
    auto block_contents = block_contents_result.release_value();
    auto* block_as_pointers = (unsigned*)block_contents.data();
    auto buffer = UserOrKernelBuffer::for_kernel_buffer(reinterpret_cast<u8*>(block_as_pointers));
    TRY(fs().read_block(block, &buffer, fs().block_size()));

    // Free the unused indirect blocks.
    for (unsigned i = new_indirect_blocks_length; i < old_indirect_blocks_length; i++) {
        dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::shrink_doubly_indirect_block(): Freeing indirect block {} at index {}", identifier(), block_as_pointers[i], i);
        TRY(fs().set_block_allocation_state(block_as_pointers[i], false));
        meta_blocks--;
    }

    // Free the doubly indirect block if no longer needed.
    if (new_blocks_length == 0) {
        dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::shrink_doubly_indirect_block(): Freeing doubly indirect block {}", identifier(), block);
        TRY(fs().set_block_allocation_state(block, false));
        meta_blocks--;
    }

    return KSuccess;
}

KResult Ext2FSInode::grow_triply_indirect_block(BlockBasedFileSystem::BlockIndex block, size_t old_blocks_length, Span<BlockBasedFileSystem::BlockIndex> blocks_indices, Vector<Ext2FS::BlockIndex>& new_meta_blocks, unsigned& meta_blocks)
{
    const auto entries_per_block = EXT2_ADDR_PER_BLOCK(&fs().super_block());
    const auto entries_per_doubly_indirect_block = entries_per_block * entries_per_block;
    const auto entries_per_triply_indirect_block = entries_per_block * entries_per_block;
    const auto old_doubly_indirect_blocks_length = divide_rounded_up(old_blocks_length, entries_per_doubly_indirect_block);
    const auto new_doubly_indirect_blocks_length = divide_rounded_up(blocks_indices.size(), entries_per_doubly_indirect_block);
    VERIFY(blocks_indices.size() > 0);
    VERIFY(blocks_indices.size() > old_blocks_length);
    VERIFY(blocks_indices.size() <= entries_per_triply_indirect_block);

    auto block_contents_result = ByteBuffer::create_uninitialized(fs().block_size());
    if (!block_contents_result.has_value())
        return ENOMEM;
    auto block_contents = block_contents_result.release_value();
    auto* block_as_pointers = (unsigned*)block_contents.data();
    OutputMemoryStream stream { block_contents };
    auto buffer = UserOrKernelBuffer::for_kernel_buffer(stream.data());

    if (old_blocks_length > 0) {
        TRY(fs().read_block(block, &buffer, fs().block_size()));
    }

    // Grow the triply indirect block.
    for (unsigned i = 0; i < old_doubly_indirect_blocks_length; i++)
        stream << static_cast<u32>(block_as_pointers[i]);
    for (unsigned i = old_doubly_indirect_blocks_length; i < new_doubly_indirect_blocks_length; i++) {
        auto new_block = new_meta_blocks.take_last().value();
        dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::grow_triply_indirect_block(): Allocating doubly indirect block {} at index {}", identifier(), new_block, i);
        stream << static_cast<u32>(new_block);
        meta_blocks++;
    }
    stream.fill_to_end(0);

    // Write out the doubly indirect blocks.
    for (unsigned i = old_blocks_length / entries_per_doubly_indirect_block; i < new_doubly_indirect_blocks_length; i++) {
        const auto processed_blocks = i * entries_per_doubly_indirect_block;
        const auto old_doubly_indirect_blocks_length = min(old_blocks_length > processed_blocks ? old_blocks_length - processed_blocks : 0, entries_per_doubly_indirect_block);
        const auto new_doubly_indirect_blocks_length = min(blocks_indices.size() > processed_blocks ? blocks_indices.size() - processed_blocks : 0, entries_per_doubly_indirect_block);
        TRY(grow_doubly_indirect_block(block_as_pointers[i], old_doubly_indirect_blocks_length, blocks_indices.slice(processed_blocks, new_doubly_indirect_blocks_length), new_meta_blocks, meta_blocks));
    }

    // Write out the triply indirect block.
    return fs().write_block(block, buffer, stream.size());
}

KResult Ext2FSInode::shrink_triply_indirect_block(BlockBasedFileSystem::BlockIndex block, size_t old_blocks_length, size_t new_blocks_length, unsigned& meta_blocks)
{
    const auto entries_per_block = EXT2_ADDR_PER_BLOCK(&fs().super_block());
    const auto entries_per_doubly_indirect_block = entries_per_block * entries_per_block;
    const auto entries_per_triply_indirect_block = entries_per_doubly_indirect_block * entries_per_block;
    const auto old_triply_indirect_blocks_length = divide_rounded_up(old_blocks_length, entries_per_doubly_indirect_block);
    const auto new_triply_indirect_blocks_length = new_blocks_length / entries_per_doubly_indirect_block;
    VERIFY(old_blocks_length > 0);
    VERIFY(old_blocks_length >= new_blocks_length);
    VERIFY(new_blocks_length <= entries_per_triply_indirect_block);

    auto block_contents_result = ByteBuffer::create_uninitialized(fs().block_size());
    if (!block_contents_result.has_value())
        return ENOMEM;
    auto block_contents = block_contents_result.release_value();
    auto* block_as_pointers = (unsigned*)block_contents.data();
    auto buffer = UserOrKernelBuffer::for_kernel_buffer(reinterpret_cast<u8*>(block_as_pointers));
    TRY(fs().read_block(block, &buffer, fs().block_size()));

    // Shrink the doubly indirect blocks.
    for (unsigned i = new_triply_indirect_blocks_length; i < old_triply_indirect_blocks_length; i++) {
        const auto processed_blocks = i * entries_per_doubly_indirect_block;
        const auto old_doubly_indirect_blocks_length = min(old_blocks_length > processed_blocks ? old_blocks_length - processed_blocks : 0, entries_per_doubly_indirect_block);
        const auto new_doubly_indirect_blocks_length = min(new_blocks_length > processed_blocks ? new_blocks_length - processed_blocks : 0, entries_per_doubly_indirect_block);
        dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::shrink_triply_indirect_block(): Shrinking doubly indirect block {} at index {}", identifier(), block_as_pointers[i], i);
        TRY(shrink_doubly_indirect_block(block_as_pointers[i], old_doubly_indirect_blocks_length, new_doubly_indirect_blocks_length, meta_blocks));
    }

    // Free the triply indirect block if no longer needed.
    if (new_blocks_length == 0) {
        dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::shrink_triply_indirect_block(): Freeing triply indirect block {}", identifier(), block);
        TRY(fs().set_block_allocation_state(block, false));
        meta_blocks--;
    }

    return KSuccess;
}

KResult Ext2FSInode::flush_block_list()
{
    MutexLocker locker(m_inode_lock);

    if (m_block_list.is_empty()) {
        m_raw_inode.i_blocks = 0;
        memset(m_raw_inode.i_block, 0, sizeof(m_raw_inode.i_block));
        set_metadata_dirty(true);
        return KSuccess;
    }

    // NOTE: There is a mismatch between i_blocks and blocks.size() since i_blocks includes meta blocks and blocks.size() does not.
    const auto old_block_count = ceil_div(size(), static_cast<u64>(fs().block_size()));

    auto old_shape = fs().compute_block_list_shape(old_block_count);
    const auto new_shape = fs().compute_block_list_shape(m_block_list.size());

    Vector<Ext2FS::BlockIndex> new_meta_blocks;
    if (new_shape.meta_blocks > old_shape.meta_blocks) {
        new_meta_blocks = TRY(fs().allocate_blocks(fs().group_index_from_inode(index()), new_shape.meta_blocks - old_shape.meta_blocks));
    }

    m_raw_inode.i_blocks = (m_block_list.size() + new_shape.meta_blocks) * (fs().block_size() / 512);
    dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::flush_block_list(): Old shape=({};{};{};{}:{}), new shape=({};{};{};{}:{})", identifier(), old_shape.direct_blocks, old_shape.indirect_blocks, old_shape.doubly_indirect_blocks, old_shape.triply_indirect_blocks, old_shape.meta_blocks, new_shape.direct_blocks, new_shape.indirect_blocks, new_shape.doubly_indirect_blocks, new_shape.triply_indirect_blocks, new_shape.meta_blocks);

    unsigned output_block_index = 0;
    unsigned remaining_blocks = m_block_list.size();

    // Deal with direct blocks.
    bool inode_dirty = false;
    VERIFY(new_shape.direct_blocks <= EXT2_NDIR_BLOCKS);
    for (unsigned i = 0; i < new_shape.direct_blocks; ++i) {
        if (BlockBasedFileSystem::BlockIndex(m_raw_inode.i_block[i]) != m_block_list[output_block_index])
            inode_dirty = true;
        m_raw_inode.i_block[i] = m_block_list[output_block_index].value();
        ++output_block_index;
        --remaining_blocks;
    }
    // e2fsck considers all blocks reachable through any of the pointers in
    // m_raw_inode.i_block as part of this inode regardless of the value in
    // m_raw_inode.i_size. When it finds more blocks than the amount that
    // is indicated by i_size or i_blocks it offers to repair the filesystem
    // by changing those values. That will actually cause further corruption.
    // So we must zero all pointers to blocks that are now unused.
    for (unsigned i = new_shape.direct_blocks; i < EXT2_NDIR_BLOCKS; ++i) {
        m_raw_inode.i_block[i] = 0;
    }
    if (inode_dirty) {
        if constexpr (EXT2_DEBUG) {
            dbgln("Ext2FSInode[{}]::flush_block_list(): Writing {} direct block(s) to i_block array of inode {}", identifier(), min((size_t)EXT2_NDIR_BLOCKS, m_block_list.size()), index());
            for (size_t i = 0; i < min((size_t)EXT2_NDIR_BLOCKS, m_block_list.size()); ++i)
                dbgln("   + {}", m_block_list[i]);
        }
        set_metadata_dirty(true);
    }

    // Deal with indirect blocks.
    if (old_shape.indirect_blocks != new_shape.indirect_blocks) {
        if (new_shape.indirect_blocks > old_shape.indirect_blocks) {
            // Write out the indirect block.
            if (old_shape.indirect_blocks == 0) {
                auto new_block = new_meta_blocks.take_last().value();
                dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::flush_block_list(): Allocating indirect block: {}", identifier(), new_block);
                m_raw_inode.i_block[EXT2_IND_BLOCK] = new_block;
                set_metadata_dirty(true);
                old_shape.meta_blocks++;
            }

            TRY(write_indirect_block(m_raw_inode.i_block[EXT2_IND_BLOCK], m_block_list.span().slice(output_block_index, new_shape.indirect_blocks)));
        } else if ((new_shape.indirect_blocks == 0) && (old_shape.indirect_blocks != 0)) {
            dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::flush_block_list(): Freeing indirect block: {}", identifier(), m_raw_inode.i_block[EXT2_IND_BLOCK]);
            TRY(fs().set_block_allocation_state(m_raw_inode.i_block[EXT2_IND_BLOCK], false));
            old_shape.meta_blocks--;
            m_raw_inode.i_block[EXT2_IND_BLOCK] = 0;
        }
    }

    remaining_blocks -= new_shape.indirect_blocks;
    output_block_index += new_shape.indirect_blocks;

    if (old_shape.doubly_indirect_blocks != new_shape.doubly_indirect_blocks) {
        // Write out the doubly indirect block.
        if (new_shape.doubly_indirect_blocks > old_shape.doubly_indirect_blocks) {
            if (old_shape.doubly_indirect_blocks == 0) {
                auto new_block = new_meta_blocks.take_last().value();
                dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::flush_block_list(): Allocating doubly indirect block: {}", identifier(), new_block);
                m_raw_inode.i_block[EXT2_DIND_BLOCK] = new_block;
                set_metadata_dirty(true);
                old_shape.meta_blocks++;
            }
            TRY(grow_doubly_indirect_block(m_raw_inode.i_block[EXT2_DIND_BLOCK], old_shape.doubly_indirect_blocks, m_block_list.span().slice(output_block_index, new_shape.doubly_indirect_blocks), new_meta_blocks, old_shape.meta_blocks));
        } else {
            TRY(shrink_doubly_indirect_block(m_raw_inode.i_block[EXT2_DIND_BLOCK], old_shape.doubly_indirect_blocks, new_shape.doubly_indirect_blocks, old_shape.meta_blocks));
            if (new_shape.doubly_indirect_blocks == 0)
                m_raw_inode.i_block[EXT2_DIND_BLOCK] = 0;
        }
    }

    remaining_blocks -= new_shape.doubly_indirect_blocks;
    output_block_index += new_shape.doubly_indirect_blocks;

    if (old_shape.triply_indirect_blocks != new_shape.triply_indirect_blocks) {
        // Write out the triply indirect block.
        if (new_shape.triply_indirect_blocks > old_shape.triply_indirect_blocks) {
            if (old_shape.triply_indirect_blocks == 0) {
                auto new_block = new_meta_blocks.take_last().value();
                dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::flush_block_list(): Allocating triply indirect block: {}", identifier(), new_block);
                m_raw_inode.i_block[EXT2_TIND_BLOCK] = new_block;
                set_metadata_dirty(true);
                old_shape.meta_blocks++;
            }
            TRY(grow_triply_indirect_block(m_raw_inode.i_block[EXT2_TIND_BLOCK], old_shape.triply_indirect_blocks, m_block_list.span().slice(output_block_index, new_shape.triply_indirect_blocks), new_meta_blocks, old_shape.meta_blocks));
        } else {
            TRY(shrink_triply_indirect_block(m_raw_inode.i_block[EXT2_TIND_BLOCK], old_shape.triply_indirect_blocks, new_shape.triply_indirect_blocks, old_shape.meta_blocks));
            if (new_shape.triply_indirect_blocks == 0)
                m_raw_inode.i_block[EXT2_TIND_BLOCK] = 0;
        }
    }

    remaining_blocks -= new_shape.triply_indirect_blocks;
    output_block_index += new_shape.triply_indirect_blocks;

    dbgln_if(EXT2_BLOCKLIST_DEBUG, "Ext2FSInode[{}]::flush_block_list(): New meta blocks count at {}, expecting {}", identifier(), old_shape.meta_blocks, new_shape.meta_blocks);
    VERIFY(new_meta_blocks.size() == 0);
    VERIFY(old_shape.meta_blocks == new_shape.meta_blocks);
    if (!remaining_blocks)
        return KSuccess;

    dbgln("we don't know how to write qind ext2fs blocks, they don't exist anyway!");
    VERIFY_NOT_REACHED();
}

Vector<Ext2FS::BlockIndex> Ext2FSInode::compute_block_list() const
{
    return compute_block_list_impl(false);
}

Vector<Ext2FS::BlockIndex> Ext2FSInode::compute_block_list_with_meta_blocks() const
{
    return compute_block_list_impl(true);
}

Vector<Ext2FS::BlockIndex> Ext2FSInode::compute_block_list_impl(bool include_block_list_blocks) const
{
    // FIXME: This is really awkwardly factored.. foo_impl_internal :|
    auto block_list = compute_block_list_impl_internal(m_raw_inode, include_block_list_blocks);
    while (!block_list.is_empty() && block_list.last() == 0)
        block_list.take_last();
    return block_list;
}

Vector<Ext2FS::BlockIndex> Ext2FSInode::compute_block_list_impl_internal(const ext2_inode& e2inode, bool include_block_list_blocks) const
{
    unsigned entries_per_block = EXT2_ADDR_PER_BLOCK(&fs().super_block());

    unsigned block_count = ceil_div(size(), static_cast<u64>(fs().block_size()));

    // If we are handling a symbolic link, the path is stored in the 60 bytes in
    // the inode that are used for the 12 direct and 3 indirect block pointers,
    // If the path is longer than 60 characters, a block is allocated, and the
    // block contains the destination path. The file size corresponds to the
    // path length of the destination.
    if (::is_symlink(e2inode.i_mode) && e2inode.i_blocks == 0)
        block_count = 0;

    dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::block_list_for_inode(): i_size={}, i_blocks={}, block_count={}", identifier(), e2inode.i_size, e2inode.i_blocks, block_count);

    unsigned blocks_remaining = block_count;

    if (include_block_list_blocks) {
        auto shape = fs().compute_block_list_shape(block_count);
        blocks_remaining += shape.meta_blocks;
    }

    Vector<Ext2FS::BlockIndex> list;

    auto add_block = [&](auto bi) {
        if (blocks_remaining) {
            list.append(bi);
            --blocks_remaining;
        }
    };

    if (include_block_list_blocks) {
        // This seems like an excessive over-estimate but w/e.
        list.ensure_capacity(blocks_remaining * 2);
    } else {
        list.ensure_capacity(blocks_remaining);
    }

    unsigned direct_count = min(block_count, (unsigned)EXT2_NDIR_BLOCKS);
    for (unsigned i = 0; i < direct_count; ++i) {
        auto block_index = e2inode.i_block[i];
        add_block(block_index);
    }

    if (!blocks_remaining)
        return list;

    // Don't need to make copy of add_block, since this capture will only
    // be called before compute_block_list_impl_internal finishes.
    auto process_block_array = [&](auto array_block_index, auto&& callback) {
        if (include_block_list_blocks)
            add_block(array_block_index);
        auto count = min(blocks_remaining, entries_per_block);
        if (!count)
            return;
        size_t read_size = count * sizeof(u32);
        // FIXME: Handle possible OOM situation.
        auto array_storage = ByteBuffer::create_uninitialized(read_size).release_value();
        auto* array = (u32*)array_storage.data();
        auto buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)array);
        if (auto result = fs().read_block(array_block_index, &buffer, read_size, 0); result.is_error()) {
            // FIXME: Stop here and propagate this error.
            dbgln("Ext2FSInode[{}]::compute_block_list_impl_internal(): Error: {}", identifier(), result.error());
        }
        for (unsigned i = 0; i < count; ++i)
            callback(Ext2FS::BlockIndex(array[i]));
    };

    process_block_array(e2inode.i_block[EXT2_IND_BLOCK], [&](auto block_index) {
        add_block(block_index);
    });

    if (!blocks_remaining)
        return list;

    process_block_array(e2inode.i_block[EXT2_DIND_BLOCK], [&](auto block_index) {
        process_block_array(block_index, [&](auto block_index2) {
            add_block(block_index2);
        });
    });

    if (!blocks_remaining)
        return list;

    process_block_array(e2inode.i_block[EXT2_TIND_BLOCK], [&](auto block_index) {
        process_block_array(block_index, [&](auto block_index2) {
            process_block_array(block_index2, [&](auto block_index3) {
                add_block(block_index3);
            });
        });
    });

    return list;
}

void Ext2FS::free_inode(Ext2FSInode& inode)
{
    MutexLocker locker(m_lock);
    VERIFY(inode.m_raw_inode.i_links_count == 0);
    dbgln_if(EXT2_DEBUG, "Ext2FS[{}]::free_inode(): Inode {} has no more links, time to delete!", fsid(), inode.index());

    // Mark all blocks used by this inode as free.
    for (auto block_index : inode.compute_block_list_with_meta_blocks()) {
        VERIFY(block_index <= super_block().s_blocks_count);
        if (block_index.value()) {
            if (auto result = set_block_allocation_state(block_index, false); result.is_error()) {
                dbgln("Ext2FS[{}]::free_inode(): Failed to deallocate block {} for inode {}", fsid(), block_index, inode.index());
            }
        }
    }

    // If the inode being freed is a directory, update block group directory counter.
    if (inode.is_directory()) {
        auto& bgd = const_cast<ext2_group_desc&>(group_descriptor(group_index_from_inode(inode.index())));
        --bgd.bg_used_dirs_count;
        dbgln_if(EXT2_DEBUG, "Ext2FS[{}]::free_inode(): Decremented bg_used_dirs_count to {} for inode {}", fsid(), bgd.bg_used_dirs_count, inode.index());
        m_block_group_descriptors_dirty = true;
    }

    // NOTE: After this point, the inode metadata is wiped.
    memset(&inode.m_raw_inode, 0, sizeof(ext2_inode));
    inode.m_raw_inode.i_dtime = kgettimeofday().to_truncated_seconds();
    write_ext2_inode(inode.index(), inode.m_raw_inode);

    // Mark the inode as free.
    if (auto result = set_inode_allocation_state(inode.index(), false); result.is_error())
        dbgln("Ext2FS[{}]::free_inode(): Failed to free inode {}: {}", fsid(), inode.index(), result.error());
}

void Ext2FS::flush_block_group_descriptor_table()
{
    MutexLocker locker(m_lock);
    auto blocks_to_write = ceil_div(m_block_group_count * sizeof(ext2_group_desc), block_size());
    auto first_block_of_bgdt = block_size() == 1024 ? 2 : 1;
    auto buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)block_group_descriptors());
    if (auto result = write_blocks(first_block_of_bgdt, blocks_to_write, buffer); result.is_error())
        dbgln("Ext2FS[{}]::flush_block_group_descriptor_table(): Failed to write blocks: {}", fsid(), result.error());
}

void Ext2FS::flush_writes()
{
    {
        MutexLocker locker(m_lock);
        if (m_super_block_dirty) {
            flush_super_block();
            m_super_block_dirty = false;
        }
        if (m_block_group_descriptors_dirty) {
            flush_block_group_descriptor_table();
            m_block_group_descriptors_dirty = false;
        }
        for (auto& cached_bitmap : m_cached_bitmaps) {
            if (cached_bitmap->dirty) {
                auto buffer = UserOrKernelBuffer::for_kernel_buffer(cached_bitmap->buffer->data());
                if (auto result = write_block(cached_bitmap->bitmap_block_index, buffer, block_size()); result.is_error()) {
                    dbgln("Ext2FS[{}]::flush_writes(): Failed to write blocks: {}", fsid(), result.error());
                }
                cached_bitmap->dirty = false;
                dbgln_if(EXT2_DEBUG, "Ext2FS[{}]::flush_writes(): Flushed bitmap block {}", fsid(), cached_bitmap->bitmap_block_index);
            }
        }

        // Uncache Inodes that are only kept alive by the index-to-inode lookup cache.
        // We don't uncache Inodes that are being watched by at least one InodeWatcher.

        // FIXME: It would be better to keep a capped number of Inodes around.
        //        The problem is that they are quite heavy objects, and use a lot of heap memory
        //        for their (child name lookup) and (block list) caches.
        Vector<InodeIndex> unused_inodes;
        for (auto& it : m_inode_cache) {
            // NOTE: If we're asked to look up an inode by number (via get_inode) and it turns out
            //       to not exist, we remember the fact that it doesn't exist by caching a nullptr.
            //       This seems like a reasonable time to uncache ideas about unknown inodes, so do that.
            if (!it.value) {
                unused_inodes.append(it.key);
                continue;
            }
            if (it.value->ref_count() != 1)
                continue;
            if (it.value->has_watchers())
                continue;
            unused_inodes.append(it.key);
        }
        for (auto index : unused_inodes)
            uncache_inode(index);
    }

    BlockBasedFileSystem::flush_writes();
}

Ext2FSInode::Ext2FSInode(Ext2FS& fs, InodeIndex index)
    : Inode(fs, index)
{
}

Ext2FSInode::~Ext2FSInode()
{
    if (m_raw_inode.i_links_count == 0)
        fs().free_inode(*this);
}

u64 Ext2FSInode::size() const
{
    if (Kernel::is_regular_file(m_raw_inode.i_mode) && ((u32)fs().get_features_readonly() & (u32)Ext2FS::FeaturesReadOnly::FileSize64bits))
        return static_cast<u64>(m_raw_inode.i_dir_acl) << 32 | m_raw_inode.i_size;
    return m_raw_inode.i_size;
}

InodeMetadata Ext2FSInode::metadata() const
{
    MutexLocker locker(m_inode_lock);
    InodeMetadata metadata;
    metadata.inode = identifier();
    metadata.size = size();
    metadata.mode = m_raw_inode.i_mode;
    metadata.uid = m_raw_inode.i_uid;
    metadata.gid = m_raw_inode.i_gid;
    metadata.link_count = m_raw_inode.i_links_count;
    metadata.atime = m_raw_inode.i_atime;
    metadata.ctime = m_raw_inode.i_ctime;
    metadata.mtime = m_raw_inode.i_mtime;
    metadata.dtime = m_raw_inode.i_dtime;
    metadata.block_size = fs().block_size();
    metadata.block_count = m_raw_inode.i_blocks;

    if (Kernel::is_character_device(m_raw_inode.i_mode) || Kernel::is_block_device(m_raw_inode.i_mode)) {
        unsigned dev = m_raw_inode.i_block[0];
        if (!dev)
            dev = m_raw_inode.i_block[1];
        metadata.major_device = (dev & 0xfff00) >> 8;
        metadata.minor_device = (dev & 0xff) | ((dev >> 12) & 0xfff00);
    }
    return metadata;
}

void Ext2FSInode::flush_metadata()
{
    MutexLocker locker(m_inode_lock);
    dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::flush_metadata(): Flushing inode", identifier());
    fs().write_ext2_inode(index(), m_raw_inode);
    if (is_directory()) {
        // Unless we're about to go away permanently, invalidate the lookup cache.
        if (m_raw_inode.i_links_count != 0) {
            // FIXME: This invalidation is way too hardcore. It's sad to throw away the whole cache.
            m_lookup_cache.clear();
        }
    }
    set_metadata_dirty(false);
}

KResultOr<NonnullRefPtr<Inode>> Ext2FS::get_inode(InodeIdentifier inode) const
{
    MutexLocker locker(m_lock);
    VERIFY(inode.fsid() == fsid());

    {
        auto it = m_inode_cache.find(inode.index());
        if (it != m_inode_cache.end()) {
            if (!it->value)
                return ENOENT;
            return *it->value;
        }
    }

    auto inode_allocation_state = TRY(get_inode_allocation_state(inode.index()));

    if (!inode_allocation_state) {
        m_inode_cache.set(inode.index(), nullptr);
        return ENOENT;
    }

    BlockIndex block_index;
    unsigned offset;
    if (!find_block_containing_inode(inode.index(), block_index, offset))
        return EINVAL;

    auto new_inode = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Ext2FSInode(const_cast<Ext2FS&>(*this), inode.index())));

    auto buffer = UserOrKernelBuffer::for_kernel_buffer(reinterpret_cast<u8*>(&new_inode->m_raw_inode));
    TRY(read_block(block_index, &buffer, sizeof(ext2_inode), offset));

    m_inode_cache.set(inode.index(), new_inode);
    return new_inode;
}

KResultOr<size_t> Ext2FSInode::read_bytes(off_t offset, size_t count, UserOrKernelBuffer& buffer, OpenFileDescription* description) const
{
    MutexLocker inode_locker(m_inode_lock);
    VERIFY(offset >= 0);
    if (m_raw_inode.i_size == 0)
        return 0;

    if (static_cast<u64>(offset) >= size())
        return 0;

    // Symbolic links shorter than 60 characters are store inline inside the i_block array.
    // This avoids wasting an entire block on short links. (Most links are short.)
    if (is_symlink() && size() < max_inline_symlink_length) {
        VERIFY(offset == 0);
        size_t nread = min((off_t)size() - offset, static_cast<off_t>(count));
        TRY(buffer.write(((const u8*)m_raw_inode.i_block) + offset, nread));
        return nread;
    }

    if (m_block_list.is_empty())
        m_block_list = compute_block_list();

    if (m_block_list.is_empty()) {
        dmesgln("Ext2FSInode[{}]::read_bytes(): Empty block list", identifier());
        return EIO;
    }

    bool allow_cache = !description || !description->is_direct();

    const int block_size = fs().block_size();

    BlockBasedFileSystem::BlockIndex first_block_logical_index = offset / block_size;
    BlockBasedFileSystem::BlockIndex last_block_logical_index = (offset + count) / block_size;
    if (last_block_logical_index >= m_block_list.size())
        last_block_logical_index = m_block_list.size() - 1;

    int offset_into_first_block = offset % block_size;

    size_t nread = 0;
    auto remaining_count = min((off_t)count, (off_t)size() - offset);

    dbgln_if(EXT2_VERY_DEBUG, "Ext2FSInode[{}]::read_bytes(): Reading up to {} bytes, {} bytes into inode to {}", identifier(), count, offset, buffer.user_or_kernel_ptr());

    for (auto bi = first_block_logical_index; remaining_count && bi <= last_block_logical_index; bi = bi.value() + 1) {
        auto block_index = m_block_list[bi.value()];
        size_t offset_into_block = (bi == first_block_logical_index) ? offset_into_first_block : 0;
        size_t num_bytes_to_copy = min((size_t)block_size - offset_into_block, (size_t)remaining_count);
        auto buffer_offset = buffer.offset(nread);
        if (block_index.value() == 0) {
            // This is a hole, act as if it's filled with zeroes.
            TRY(buffer_offset.memset(0, num_bytes_to_copy));
        } else {
            if (auto result = fs().read_block(block_index, &buffer_offset, num_bytes_to_copy, offset_into_block, allow_cache); result.is_error()) {
                dmesgln("Ext2FSInode[{}]::read_bytes(): Failed to read block {} (index {})", identifier(), block_index.value(), bi);
                return result.error();
            }
        }
        remaining_count -= num_bytes_to_copy;
        nread += num_bytes_to_copy;
    }

    return nread;
}

KResult Ext2FSInode::resize(u64 new_size)
{
    auto old_size = size();
    if (old_size == new_size)
        return KSuccess;

    if (!((u32)fs().get_features_readonly() & (u32)Ext2FS::FeaturesReadOnly::FileSize64bits) && (new_size >= static_cast<u32>(-1)))
        return ENOSPC;

    u64 block_size = fs().block_size();
    auto blocks_needed_before = ceil_div(old_size, block_size);
    auto blocks_needed_after = ceil_div(new_size, block_size);

    if constexpr (EXT2_DEBUG) {
        dbgln("Ext2FSInode[{}]::resize(): Blocks needed before (size was {}): {}", identifier(), old_size, blocks_needed_before);
        dbgln("Ext2FSInode[{}]::resize(): Blocks needed after  (size is  {}): {}", identifier(), new_size, blocks_needed_after);
    }

    if (blocks_needed_after > blocks_needed_before) {
        auto additional_blocks_needed = blocks_needed_after - blocks_needed_before;
        if (additional_blocks_needed > fs().super_block().s_free_blocks_count)
            return ENOSPC;
    }

    if (m_block_list.is_empty())
        m_block_list = this->compute_block_list();

    if (blocks_needed_after > blocks_needed_before) {
        auto blocks = TRY(fs().allocate_blocks(fs().group_index_from_inode(index()), blocks_needed_after - blocks_needed_before));
        if (!m_block_list.try_extend(move(blocks)))
            return ENOMEM;
    } else if (blocks_needed_after < blocks_needed_before) {
        if constexpr (EXT2_VERY_DEBUG) {
            dbgln("Ext2FSInode[{}]::resize(): Shrinking inode, old block list is {} entries:", identifier(), m_block_list.size());
            for (auto block_index : m_block_list) {
                dbgln("    # {}", block_index);
            }
        }
        while (m_block_list.size() != blocks_needed_after) {
            auto block_index = m_block_list.take_last();
            if (block_index.value()) {
                if (auto result = fs().set_block_allocation_state(block_index, false); result.is_error()) {
                    dbgln("Ext2FSInode[{}]::resize(): Failed to free block {}: {}", identifier(), block_index, result.error());
                    return result;
                }
            }
        }
    }

    TRY(flush_block_list());

    m_raw_inode.i_size = new_size;
    if (Kernel::is_regular_file(m_raw_inode.i_mode))
        m_raw_inode.i_dir_acl = new_size >> 32;

    set_metadata_dirty(true);

    if (new_size > old_size) {
        // If we're growing the inode, make sure we zero out all the new space.
        // FIXME: There are definitely more efficient ways to achieve this.
        auto bytes_to_clear = new_size - old_size;
        auto clear_from = old_size;
        u8 zero_buffer[PAGE_SIZE] {};
        while (bytes_to_clear) {
            auto nwritten = TRY(write_bytes(clear_from, min(static_cast<u64>(sizeof(zero_buffer)), bytes_to_clear), UserOrKernelBuffer::for_kernel_buffer(zero_buffer), nullptr));
            VERIFY(nwritten != 0);
            bytes_to_clear -= nwritten;
            clear_from += nwritten;
        }
    }

    return KSuccess;
}

KResultOr<size_t> Ext2FSInode::write_bytes(off_t offset, size_t count, const UserOrKernelBuffer& data, OpenFileDescription* description)
{
    VERIFY(offset >= 0);

    if (count == 0)
        return 0;

    MutexLocker inode_locker(m_inode_lock);

    TRY(prepare_to_write_data());

    if (is_symlink()) {
        VERIFY(offset == 0);
        if (max((size_t)(offset + count), (size_t)m_raw_inode.i_size) < max_inline_symlink_length) {
            dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::write_bytes(): Poking into i_block array for inline symlink ({} bytes)", identifier(), count);
            TRY(data.read(((u8*)m_raw_inode.i_block) + offset, count));
            if ((size_t)(offset + count) > (size_t)m_raw_inode.i_size)
                m_raw_inode.i_size = offset + count;
            set_metadata_dirty(true);
            return count;
        }
    }

    bool allow_cache = !description || !description->is_direct();

    const auto block_size = fs().block_size();
    auto new_size = max(static_cast<u64>(offset) + count, size());

    TRY(resize(new_size));

    if (m_block_list.is_empty())
        m_block_list = compute_block_list();

    if (m_block_list.is_empty()) {
        dbgln("Ext2FSInode[{}]::write_bytes(): Empty block list", identifier());
        return EIO;
    }

    BlockBasedFileSystem::BlockIndex first_block_logical_index = offset / block_size;
    BlockBasedFileSystem::BlockIndex last_block_logical_index = (offset + count) / block_size;
    if (last_block_logical_index >= m_block_list.size())
        last_block_logical_index = m_block_list.size() - 1;

    size_t offset_into_first_block = offset % block_size;

    size_t nwritten = 0;
    auto remaining_count = min((off_t)count, (off_t)new_size - offset);

    dbgln_if(EXT2_VERY_DEBUG, "Ext2FSInode[{}]::write_bytes(): Writing {} bytes, {} bytes into inode from {}", identifier(), count, offset, data.user_or_kernel_ptr());

    for (auto bi = first_block_logical_index; remaining_count && bi <= last_block_logical_index; bi = bi.value() + 1) {
        size_t offset_into_block = (bi == first_block_logical_index) ? offset_into_first_block : 0;
        size_t num_bytes_to_copy = min((size_t)block_size - offset_into_block, (size_t)remaining_count);
        dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::write_bytes(): Writing block {} (offset_into_block: {})", identifier(), m_block_list[bi.value()], offset_into_block);
        if (auto result = fs().write_block(m_block_list[bi.value()], data.offset(nwritten), num_bytes_to_copy, offset_into_block, allow_cache); result.is_error()) {
            dbgln("Ext2FSInode[{}]::write_bytes(): Failed to write block {} (index {})", identifier(), m_block_list[bi.value()], bi);
            return result;
        }
        remaining_count -= num_bytes_to_copy;
        nwritten += num_bytes_to_copy;
    }

    did_modify_contents();

    dbgln_if(EXT2_VERY_DEBUG, "Ext2FSInode[{}]::write_bytes(): After write, i_size={}, i_blocks={} ({} blocks in list)", identifier(), size(), m_raw_inode.i_blocks, m_block_list.size());
    return nwritten;
}

u8 Ext2FS::internal_file_type_to_directory_entry_type(const DirectoryEntryView& entry) const
{
    switch (entry.file_type) {
    case EXT2_FT_REG_FILE:
        return DT_REG;
    case EXT2_FT_DIR:
        return DT_DIR;
    case EXT2_FT_CHRDEV:
        return DT_CHR;
    case EXT2_FT_BLKDEV:
        return DT_BLK;
    case EXT2_FT_FIFO:
        return DT_FIFO;
    case EXT2_FT_SOCK:
        return DT_SOCK;
    case EXT2_FT_SYMLINK:
        return DT_LNK;
    default:
        return DT_UNKNOWN;
    }
}

Ext2FS::FeaturesReadOnly Ext2FS::get_features_readonly() const
{
    if (m_super_block.s_rev_level > 0)
        return static_cast<Ext2FS::FeaturesReadOnly>(m_super_block.s_feature_ro_compat);
    return Ext2FS::FeaturesReadOnly::None;
}

KResult Ext2FSInode::traverse_as_directory(Function<bool(FileSystem::DirectoryEntryView const&)> callback) const
{
    VERIFY(is_directory());

    u8 buffer[max_block_size];
    auto buf = UserOrKernelBuffer::for_kernel_buffer(buffer);

    auto block_size = fs().block_size();
    auto file_size = size();

    // Directory entries are guaranteed not to span multiple blocks,
    // so we can iterate over blocks separately.

    for (u64 offset = 0; offset < file_size; offset += block_size) {
        TRY(read_bytes(offset, block_size, buf, nullptr));

        auto* entry = reinterpret_cast<ext2_dir_entry_2*>(buffer);
        auto* entries_end = reinterpret_cast<ext2_dir_entry_2*>(buffer + block_size);
        while (entry < entries_end) {
            if (entry->inode != 0) {
                dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::traverse_as_directory(): inode {}, name_len: {}, rec_len: {}, file_type: {}, name: {}", identifier(), entry->inode, entry->name_len, entry->rec_len, entry->file_type, StringView(entry->name, entry->name_len));
                if (!callback({ { entry->name, entry->name_len }, { fsid(), entry->inode }, entry->file_type }))
                    return KSuccess;
            }
            entry = (ext2_dir_entry_2*)((char*)entry + entry->rec_len);
        }
    }

    return KSuccess;
}

KResult Ext2FSInode::write_directory(Vector<Ext2FSDirectoryEntry>& entries)
{
    MutexLocker locker(m_inode_lock);
    auto block_size = fs().block_size();

    // Calculate directory size and record length of entries so that
    // the following constraints are met:
    // - All used blocks must be entirely filled.
    // - Entries are aligned on a 4-byte boundary.
    // - No entry may span multiple blocks.
    size_t directory_size = 0;
    size_t space_in_block = block_size;
    for (size_t i = 0; i < entries.size(); ++i) {
        auto& entry = entries[i];
        entry.record_length = EXT2_DIR_REC_LEN(entry.name.length());
        space_in_block -= entry.record_length;
        if (i + 1 < entries.size()) {
            if (EXT2_DIR_REC_LEN(entries[i + 1].name.length()) > space_in_block) {
                entry.record_length += space_in_block;
                space_in_block = block_size;
            }
        } else {
            entry.record_length += space_in_block;
        }
        directory_size += entry.record_length;
    }

    dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::write_directory(): New directory contents to write (size {}):", identifier(), directory_size);

    auto directory_data_result = ByteBuffer::create_uninitialized(directory_size);
    if (!directory_data_result.has_value())
        return ENOMEM;
    auto directory_data = directory_data_result.release_value();
    OutputMemoryStream stream { directory_data };

    for (auto& entry : entries) {
        dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::write_directory(): Writing inode: {}, name_len: {}, rec_len: {}, file_type: {}, name: {}", identifier(), entry.inode_index, u16(entry.name.length()), u16(entry.record_length), u8(entry.file_type), entry.name);

        stream << u32(entry.inode_index.value());
        stream << u16(entry.record_length);
        stream << u8(entry.name.length());
        stream << u8(entry.file_type);
        stream << entry.name.bytes();
        int padding = entry.record_length - entry.name.length() - 8;
        for (int j = 0; j < padding; ++j)
            stream << u8(0);
    }

    VERIFY(stream.is_end());

    TRY(resize(stream.size()));

    auto buffer = UserOrKernelBuffer::for_kernel_buffer(stream.data());
    auto nwritten = TRY(write_bytes(0, stream.size(), buffer, nullptr));
    set_metadata_dirty(true);
    if (nwritten != directory_data.size())
        return EIO;
    return KSuccess;
}

KResultOr<NonnullRefPtr<Inode>> Ext2FSInode::create_child(StringView name, mode_t mode, dev_t dev, UserID uid, GroupID gid)
{
    if (::is_directory(mode))
        return fs().create_directory(*this, name, mode, uid, gid);
    return fs().create_inode(*this, name, mode, dev, uid, gid);
}

KResult Ext2FSInode::add_child(Inode& child, const StringView& name, mode_t mode)
{
    MutexLocker locker(m_inode_lock);
    VERIFY(is_directory());

    if (name.length() > EXT2_NAME_LEN)
        return ENAMETOOLONG;

    dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::add_child(): Adding inode {} with name '{}' and mode {:o} to directory {}", identifier(), child.index(), name, mode, index());

    Vector<Ext2FSDirectoryEntry> entries;
    bool name_already_exists = false;
    TRY(traverse_as_directory([&](auto& entry) {
        if (name == entry.name) {
            name_already_exists = true;
            return false;
        }
        entries.append({ entry.name, entry.inode.index(), entry.file_type });
        return true;
    }));

    if (name_already_exists) {
        dbgln("Ext2FSInode[{}]::add_child(): Name '{}' already exists", identifier(), name);
        return EEXIST;
    }

    TRY(child.increment_link_count());

    entries.empend(name, child.index(), to_ext2_file_type(mode));

    TRY(write_directory(entries));
    TRY(populate_lookup_cache());

    m_lookup_cache.set(name, child.index());
    did_add_child(child.identifier(), name);
    return KSuccess;
}

KResult Ext2FSInode::remove_child(const StringView& name)
{
    MutexLocker locker(m_inode_lock);
    dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]::remove_child(): Removing '{}'", identifier(), name);
    VERIFY(is_directory());

    TRY(populate_lookup_cache());

    auto it = m_lookup_cache.find(name);
    if (it == m_lookup_cache.end())
        return ENOENT;
    auto child_inode_index = (*it).value;

    InodeIdentifier child_id { fsid(), child_inode_index };

    Vector<Ext2FSDirectoryEntry> entries;
    TRY(traverse_as_directory([&](auto& entry) {
        if (name != entry.name)
            entries.append({ entry.name, entry.inode.index(), entry.file_type });
        return true;
    }));

    TRY(write_directory(entries));

    m_lookup_cache.remove(name);

    auto child_inode = TRY(fs().get_inode(child_id));
    TRY(child_inode->decrement_link_count());

    did_remove_child(child_id, name);
    return KSuccess;
}

u64 Ext2FS::inodes_per_block() const
{
    return EXT2_INODES_PER_BLOCK(&super_block());
}

u64 Ext2FS::inodes_per_group() const
{
    return EXT2_INODES_PER_GROUP(&super_block());
}

u64 Ext2FS::inode_size() const
{
    return EXT2_INODE_SIZE(&super_block());
}
u64 Ext2FS::blocks_per_group() const
{
    return EXT2_BLOCKS_PER_GROUP(&super_block());
}

bool Ext2FS::write_ext2_inode(InodeIndex inode, const ext2_inode& e2inode)
{
    BlockIndex block_index;
    unsigned offset;
    if (!find_block_containing_inode(inode, block_index, offset))
        return false;
    auto buffer = UserOrKernelBuffer::for_kernel_buffer(const_cast<u8*>((const u8*)&e2inode));
    if (auto result = write_block(block_index, buffer, inode_size(), offset); result.is_error()) {
        // FIXME: Propagate errors.
        return false;
    }
    return true;
}

auto Ext2FS::allocate_blocks(GroupIndex preferred_group_index, size_t count) -> KResultOr<Vector<BlockIndex>>
{
    dbgln_if(EXT2_DEBUG, "Ext2FS: allocate_blocks(preferred group: {}, count {})", preferred_group_index, count);
    if (count == 0)
        return Vector<BlockIndex> {};

    Vector<BlockIndex> blocks;
    if (!blocks.try_ensure_capacity(count))
        return ENOMEM;

    MutexLocker locker(m_lock);
    auto group_index = preferred_group_index;

    if (!group_descriptor(preferred_group_index).bg_free_blocks_count) {
        group_index = 1;
    }

    while (blocks.size() < count) {
        bool found_a_group = false;
        if (group_descriptor(group_index).bg_free_blocks_count) {
            found_a_group = true;
        } else {
            if (group_index == preferred_group_index)
                group_index = 1;
            for (; group_index <= m_block_group_count; group_index = GroupIndex { group_index.value() + 1 }) {
                if (group_descriptor(group_index).bg_free_blocks_count) {
                    found_a_group = true;
                    break;
                }
            }
        }

        VERIFY(found_a_group);
        auto& bgd = group_descriptor(group_index);

        auto* cached_bitmap = TRY(get_bitmap_block(bgd.bg_block_bitmap));

        int blocks_in_group = min(blocks_per_group(), super_block().s_blocks_count);
        auto block_bitmap = cached_bitmap->bitmap(blocks_in_group);

        BlockIndex first_block_in_group = (group_index.value() - 1) * blocks_per_group() + first_block_index().value();
        size_t free_region_size = 0;
        auto first_unset_bit_index = block_bitmap.find_longest_range_of_unset_bits(count - blocks.size(), free_region_size);
        VERIFY(first_unset_bit_index.has_value());
        dbgln_if(EXT2_DEBUG, "Ext2FS: allocating free region of size: {} [{}]", free_region_size, group_index);
        for (size_t i = 0; i < free_region_size; ++i) {
            BlockIndex block_index = (first_unset_bit_index.value() + i) + first_block_in_group.value();
            if (auto result = set_block_allocation_state(block_index, true); result.is_error()) {
                dbgln("Ext2FS: Failed to allocate block {} in allocate_blocks()", block_index);
                return result;
            }
            blocks.unchecked_append(block_index);
            dbgln_if(EXT2_DEBUG, "  allocated > {}", block_index);
        }
    }

    VERIFY(blocks.size() == count);
    return blocks;
}

KResultOr<InodeIndex> Ext2FS::allocate_inode(GroupIndex preferred_group)
{
    dbgln_if(EXT2_DEBUG, "Ext2FS: allocate_inode(preferred_group: {})", preferred_group);
    MutexLocker locker(m_lock);

    // FIXME: We shouldn't refuse to allocate an inode if there is no group that can house the whole thing.
    //        In those cases we should just spread it across multiple groups.
    auto is_suitable_group = [this](auto group_index) {
        auto& bgd = group_descriptor(group_index);
        return bgd.bg_free_inodes_count && bgd.bg_free_blocks_count >= 1;
    };

    GroupIndex group_index;
    if (preferred_group.value() && is_suitable_group(preferred_group)) {
        group_index = preferred_group;
    } else {
        for (unsigned i = 1; i <= m_block_group_count; ++i) {
            if (is_suitable_group(i)) {
                group_index = i;
                break;
            }
        }
    }

    if (!group_index) {
        dmesgln("Ext2FS: allocate_inode: no suitable group found for new inode");
        return ENOSPC;
    }

    dbgln_if(EXT2_DEBUG, "Ext2FS: allocate_inode: found suitable group [{}] for new inode :^)", group_index);

    auto& bgd = group_descriptor(group_index);
    unsigned inodes_in_group = min(inodes_per_group(), super_block().s_inodes_count);
    InodeIndex first_inode_in_group = (group_index.value() - 1) * inodes_per_group() + 1;

    auto* cached_bitmap = TRY(get_bitmap_block(bgd.bg_inode_bitmap));
    auto inode_bitmap = cached_bitmap->bitmap(inodes_in_group);
    for (size_t i = 0; i < inode_bitmap.size(); ++i) {
        if (inode_bitmap.get(i))
            continue;
        inode_bitmap.set(i, true);

        auto inode_index = InodeIndex(first_inode_in_group.value() + i);

        cached_bitmap->dirty = true;
        m_super_block.s_free_inodes_count--;
        m_super_block_dirty = true;
        const_cast<ext2_group_desc&>(bgd).bg_free_inodes_count--;
        m_block_group_descriptors_dirty = true;

        // In case the inode cache had this cached as "non-existent", uncache that info.
        m_inode_cache.remove(inode_index.value());

        return inode_index;
    }

    dmesgln("Ext2FS: allocate_inode found no available inode, despite bgd claiming there are inodes :(");
    return EIO;
}

Ext2FS::GroupIndex Ext2FS::group_index_from_block_index(BlockIndex block_index) const
{
    if (!block_index)
        return 0;
    return (block_index.value() - 1) / blocks_per_group() + 1;
}

auto Ext2FS::group_index_from_inode(InodeIndex inode) const -> GroupIndex
{
    if (!inode)
        return 0;
    return (inode.value() - 1) / inodes_per_group() + 1;
}

KResultOr<bool> Ext2FS::get_inode_allocation_state(InodeIndex index) const
{
    MutexLocker locker(m_lock);
    if (index == 0)
        return EINVAL;
    auto group_index = group_index_from_inode(index);
    auto& bgd = group_descriptor(group_index);
    unsigned index_in_group = index.value() - ((group_index.value() - 1) * inodes_per_group());
    unsigned bit_index = (index_in_group - 1) % inodes_per_group();

    auto* cached_bitmap = TRY(const_cast<Ext2FS&>(*this).get_bitmap_block(bgd.bg_inode_bitmap));
    return cached_bitmap->bitmap(inodes_per_group()).get(bit_index);
}

KResult Ext2FS::update_bitmap_block(BlockIndex bitmap_block, size_t bit_index, bool new_state, u32& super_block_counter, u16& group_descriptor_counter)
{
    auto* cached_bitmap = TRY(get_bitmap_block(bitmap_block));
    bool current_state = cached_bitmap->bitmap(blocks_per_group()).get(bit_index);
    if (current_state == new_state) {
        dbgln("Ext2FS: Bit {} in bitmap block {} had unexpected state {}", bit_index, bitmap_block, current_state);
        return EIO;
    }
    cached_bitmap->bitmap(blocks_per_group()).set(bit_index, new_state);
    cached_bitmap->dirty = true;

    if (new_state) {
        --super_block_counter;
        --group_descriptor_counter;
    } else {
        ++super_block_counter;
        ++group_descriptor_counter;
    }

    m_super_block_dirty = true;
    m_block_group_descriptors_dirty = true;
    return KSuccess;
}

KResult Ext2FS::set_inode_allocation_state(InodeIndex inode_index, bool new_state)
{
    MutexLocker locker(m_lock);
    auto group_index = group_index_from_inode(inode_index);
    unsigned index_in_group = inode_index.value() - ((group_index.value() - 1) * inodes_per_group());
    unsigned bit_index = (index_in_group - 1) % inodes_per_group();

    dbgln_if(EXT2_DEBUG, "Ext2FS: set_inode_allocation_state: Inode {} -> {}", inode_index, new_state);
    auto& bgd = const_cast<ext2_group_desc&>(group_descriptor(group_index));
    return update_bitmap_block(bgd.bg_inode_bitmap, bit_index, new_state, m_super_block.s_free_inodes_count, bgd.bg_free_inodes_count);
}

Ext2FS::BlockIndex Ext2FS::first_block_index() const
{
    return block_size() == 1024 ? 1 : 0;
}

KResultOr<Ext2FS::CachedBitmap*> Ext2FS::get_bitmap_block(BlockIndex bitmap_block_index)
{
    for (auto& cached_bitmap : m_cached_bitmaps) {
        if (cached_bitmap->bitmap_block_index == bitmap_block_index)
            return cached_bitmap;
    }

    auto block = TRY(KBuffer::try_create_with_size(block_size(), Memory::Region::Access::ReadWrite, "Ext2FS: Cached bitmap block"));
    auto buffer = UserOrKernelBuffer::for_kernel_buffer(block->data());
    if (auto result = read_block(bitmap_block_index, &buffer, block_size()); result.is_error()) {
        dbgln("Ext2FS: Failed to load bitmap block {}", bitmap_block_index);
        return result;
    }
    auto new_bitmap = TRY(adopt_nonnull_own_or_enomem(new (nothrow) CachedBitmap(bitmap_block_index, move(block))));
    if (!m_cached_bitmaps.try_append(move(new_bitmap)))
        return ENOMEM;
    return m_cached_bitmaps.last();
}

KResult Ext2FS::set_block_allocation_state(BlockIndex block_index, bool new_state)
{
    VERIFY(block_index != 0);
    MutexLocker locker(m_lock);

    auto group_index = group_index_from_block_index(block_index);
    unsigned index_in_group = (block_index.value() - first_block_index().value()) - ((group_index.value() - 1) * blocks_per_group());
    unsigned bit_index = index_in_group % blocks_per_group();
    auto& bgd = const_cast<ext2_group_desc&>(group_descriptor(group_index));

    dbgln_if(EXT2_DEBUG, "Ext2FS: Block {} state -> {} (in bitmap block {})", block_index, new_state, bgd.bg_block_bitmap);
    return update_bitmap_block(bgd.bg_block_bitmap, bit_index, new_state, m_super_block.s_free_blocks_count, bgd.bg_free_blocks_count);
}

KResult Ext2FS::create_directory(Ext2FSInode& parent_inode, StringView name, mode_t mode, UserID uid, GroupID gid)
{
    MutexLocker locker(m_lock);
    VERIFY(is_directory(mode));

    auto inode = TRY(create_inode(parent_inode, name, mode, 0, uid, gid));

    dbgln_if(EXT2_DEBUG, "Ext2FS: create_directory: created new directory named '{} with inode {}", name, inode->index());

    Vector<Ext2FSDirectoryEntry> entries;
    entries.empend(".", inode->index(), static_cast<u8>(EXT2_FT_DIR));
    entries.empend("..", parent_inode.index(), static_cast<u8>(EXT2_FT_DIR));

    TRY(static_cast<Ext2FSInode&>(*inode).write_directory(entries));
    TRY(parent_inode.increment_link_count());

    auto& bgd = const_cast<ext2_group_desc&>(group_descriptor(group_index_from_inode(inode->identifier().index())));
    ++bgd.bg_used_dirs_count;
    m_block_group_descriptors_dirty = true;

    return KSuccess;
}

KResultOr<NonnullRefPtr<Inode>> Ext2FS::create_inode(Ext2FSInode& parent_inode, StringView name, mode_t mode, dev_t dev, UserID uid, GroupID gid)
{
    if (name.length() > EXT2_NAME_LEN)
        return ENAMETOOLONG;

    if (parent_inode.m_raw_inode.i_links_count == 0)
        return ENOENT;

    ext2_inode e2inode {};
    auto now = kgettimeofday().to_truncated_seconds();
    e2inode.i_mode = mode;
    e2inode.i_uid = uid.value();
    e2inode.i_gid = gid.value();
    e2inode.i_size = 0;
    e2inode.i_atime = now;
    e2inode.i_ctime = now;
    e2inode.i_mtime = now;
    e2inode.i_dtime = 0;
    e2inode.i_flags = 0;

    // For directories, add +1 link count for the "." entry in self.
    e2inode.i_links_count = is_directory(mode);

    if (is_character_device(mode))
        e2inode.i_block[0] = dev;
    else if (is_block_device(mode))
        e2inode.i_block[1] = dev;

    auto inode_id = TRY(allocate_inode());

    dbgln_if(EXT2_DEBUG, "Ext2FS: writing initial metadata for inode {}", inode_id.value());
    auto success = write_ext2_inode(inode_id, e2inode);
    VERIFY(success);

    auto new_inode = TRY(get_inode({ fsid(), inode_id }));

    dbgln_if(EXT2_DEBUG, "Ext2FS: Adding inode '{}' (mode {:o}) to parent directory {}", name, mode, parent_inode.index());
    TRY(parent_inode.add_child(*new_inode, name, mode));
    return new_inode;
}

KResult Ext2FSInode::populate_lookup_cache() const
{
    MutexLocker locker(m_inode_lock);
    if (!m_lookup_cache.is_empty())
        return KSuccess;
    HashMap<String, InodeIndex> children;

    TRY(traverse_as_directory([&children](auto& entry) {
        children.set(entry.name, entry.inode.index());
        return true;
    }));

    VERIFY(m_lookup_cache.is_empty());
    m_lookup_cache = move(children);
    return KSuccess;
}

KResultOr<NonnullRefPtr<Inode>> Ext2FSInode::lookup(StringView name)
{
    VERIFY(is_directory());
    dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]:lookup(): Looking up '{}'", identifier(), name);
    TRY(populate_lookup_cache());

    InodeIndex inode_index;
    {
        MutexLocker locker(m_inode_lock);
        auto it = m_lookup_cache.find(name.hash(), [&](auto& entry) { return entry.key == name; });
        if (it == m_lookup_cache.end()) {
            dbgln_if(EXT2_DEBUG, "Ext2FSInode[{}]:lookup(): '{}' not found", identifier(), name);
            return ENOENT;
        }
        inode_index = it->value;
    }

    return fs().get_inode({ fsid(), inode_index });
}

void Ext2FSInode::one_ref_left()
{
    // FIXME: I would like to not live forever, but uncached Ext2FS is fucking painful right now.
}

KResult Ext2FSInode::set_atime(time_t t)
{
    MutexLocker locker(m_inode_lock);
    if (fs().is_readonly())
        return EROFS;
    m_raw_inode.i_atime = t;
    set_metadata_dirty(true);
    return KSuccess;
}

KResult Ext2FSInode::set_ctime(time_t t)
{
    MutexLocker locker(m_inode_lock);
    if (fs().is_readonly())
        return EROFS;
    m_raw_inode.i_ctime = t;
    set_metadata_dirty(true);
    return KSuccess;
}

KResult Ext2FSInode::set_mtime(time_t t)
{
    MutexLocker locker(m_inode_lock);
    if (fs().is_readonly())
        return EROFS;
    m_raw_inode.i_mtime = t;
    set_metadata_dirty(true);
    return KSuccess;
}

KResult Ext2FSInode::increment_link_count()
{
    MutexLocker locker(m_inode_lock);
    if (fs().is_readonly())
        return EROFS;
    constexpr size_t max_link_count = 65535;
    if (m_raw_inode.i_links_count == max_link_count)
        return EMLINK;
    ++m_raw_inode.i_links_count;
    set_metadata_dirty(true);
    return KSuccess;
}

KResult Ext2FSInode::decrement_link_count()
{
    MutexLocker locker(m_inode_lock);
    if (fs().is_readonly())
        return EROFS;
    VERIFY(m_raw_inode.i_links_count);

    --m_raw_inode.i_links_count;
    set_metadata_dirty(true);
    if (m_raw_inode.i_links_count == 0)
        did_delete_self();

    if (ref_count() == 1 && m_raw_inode.i_links_count == 0)
        fs().uncache_inode(index());

    return KSuccess;
}

void Ext2FS::uncache_inode(InodeIndex index)
{
    MutexLocker locker(m_lock);
    m_inode_cache.remove(index);
}

KResult Ext2FSInode::chmod(mode_t mode)
{
    MutexLocker locker(m_inode_lock);
    if (m_raw_inode.i_mode == mode)
        return KSuccess;
    m_raw_inode.i_mode = mode;
    set_metadata_dirty(true);
    return KSuccess;
}

KResult Ext2FSInode::chown(UserID uid, GroupID gid)
{
    MutexLocker locker(m_inode_lock);
    if (m_raw_inode.i_uid == uid && m_raw_inode.i_gid == gid)
        return KSuccess;
    m_raw_inode.i_uid = uid.value();
    m_raw_inode.i_gid = gid.value();
    set_metadata_dirty(true);
    return KSuccess;
}

KResult Ext2FSInode::truncate(u64 size)
{
    MutexLocker locker(m_inode_lock);
    if (static_cast<u64>(m_raw_inode.i_size) == size)
        return KSuccess;
    TRY(resize(size));
    set_metadata_dirty(true);
    return KSuccess;
}

KResultOr<int> Ext2FSInode::get_block_address(int index)
{
    MutexLocker locker(m_inode_lock);

    if (m_block_list.is_empty())
        m_block_list = compute_block_list();

    if (index < 0 || (size_t)index >= m_block_list.size())
        return 0;

    return m_block_list[index].value();
}

unsigned Ext2FS::total_block_count() const
{
    MutexLocker locker(m_lock);
    return super_block().s_blocks_count;
}

unsigned Ext2FS::free_block_count() const
{
    MutexLocker locker(m_lock);
    return super_block().s_free_blocks_count;
}

unsigned Ext2FS::total_inode_count() const
{
    MutexLocker locker(m_lock);
    return super_block().s_inodes_count;
}

unsigned Ext2FS::free_inode_count() const
{
    MutexLocker locker(m_lock);
    return super_block().s_free_inodes_count;
}

KResult Ext2FS::prepare_to_unmount()
{
    MutexLocker locker(m_lock);

    for (auto& it : m_inode_cache) {
        if (it.value->ref_count() > 1)
            return EBUSY;
    }

    m_inode_cache.clear();
    m_root_inode = nullptr;
    return KSuccess;
}
}