1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/IntrusiveList.h>
#include <Kernel/Debug.h>
#include <Kernel/FileSystem/BlockBasedFileSystem.h>
#include <Kernel/Process.h>
namespace Kernel {
struct CacheEntry {
IntrusiveListNode<CacheEntry> list_node;
BlockBasedFileSystem::BlockIndex block_index { 0 };
u8* data { nullptr };
bool has_data { false };
};
class DiskCache {
public:
explicit DiskCache(BlockBasedFileSystem& fs)
: m_fs(fs)
, m_cached_block_data(KBuffer::create_with_size(m_entry_count * m_fs.block_size()))
, m_entries(KBuffer::create_with_size(m_entry_count * sizeof(CacheEntry)))
{
for (size_t i = 0; i < m_entry_count; ++i) {
entries()[i].data = m_cached_block_data.data() + i * m_fs.block_size();
m_clean_list.append(entries()[i]);
}
}
~DiskCache() = default;
bool is_dirty() const { return m_dirty; }
void set_dirty(bool b) { m_dirty = b; }
void mark_all_clean()
{
while (auto* entry = m_dirty_list.first())
m_clean_list.prepend(*entry);
m_dirty = false;
}
void mark_dirty(CacheEntry& entry)
{
m_dirty_list.prepend(entry);
m_dirty = true;
}
void mark_clean(CacheEntry& entry)
{
m_clean_list.prepend(entry);
}
CacheEntry& get(BlockBasedFileSystem::BlockIndex block_index) const
{
if (auto it = m_hash.find(block_index); it != m_hash.end()) {
auto& entry = const_cast<CacheEntry&>(*it->value);
VERIFY(entry.block_index == block_index);
return entry;
}
if (m_clean_list.is_empty()) {
// Not a single clean entry! Flush writes and try again.
// NOTE: We want to make sure we only call FileBackedFileSystem flush here,
// not some FileBackedFileSystem subclass flush!
m_fs.flush_writes_impl();
return get(block_index);
}
VERIFY(m_clean_list.last());
auto& new_entry = *m_clean_list.last();
m_clean_list.prepend(new_entry);
m_hash.remove(new_entry.block_index);
m_hash.set(block_index, &new_entry);
new_entry.block_index = block_index;
new_entry.has_data = false;
return new_entry;
}
const CacheEntry* entries() const { return (const CacheEntry*)m_entries.data(); }
CacheEntry* entries() { return (CacheEntry*)m_entries.data(); }
template<typename Callback>
void for_each_dirty_entry(Callback callback)
{
for (auto& entry : m_dirty_list)
callback(entry);
}
private:
BlockBasedFileSystem& m_fs;
size_t m_entry_count { 10000 };
mutable HashMap<BlockBasedFileSystem::BlockIndex, CacheEntry*> m_hash;
mutable IntrusiveList<CacheEntry, RawPtr<CacheEntry>, &CacheEntry::list_node> m_clean_list;
mutable IntrusiveList<CacheEntry, RawPtr<CacheEntry>, &CacheEntry::list_node> m_dirty_list;
KBuffer m_cached_block_data;
KBuffer m_entries;
bool m_dirty { false };
};
BlockBasedFileSystem::BlockBasedFileSystem(FileDescription& file_description)
: FileBackedFileSystem(file_description)
{
VERIFY(file_description.file().is_seekable());
}
BlockBasedFileSystem::~BlockBasedFileSystem()
{
}
KResult BlockBasedFileSystem::write_block(BlockIndex index, const UserOrKernelBuffer& data, size_t count, size_t offset, bool allow_cache)
{
VERIFY(m_logical_block_size);
VERIFY(offset + count <= block_size());
dbgln_if(BBFS_DEBUG, "BlockBasedFileSystem::write_block {}, size={}", index, count);
MutexLocker locker(m_cache_lock);
if (!allow_cache) {
flush_specific_block_if_needed(index);
auto base_offset = index.value() * block_size() + offset;
auto nwritten = file_description().write(base_offset, data, count);
if (nwritten.is_error())
return nwritten.error();
VERIFY(nwritten.value() == count);
return KSuccess;
}
auto& entry = cache().get(index);
if (count < block_size()) {
// Fill the cache first.
auto result = read_block(index, nullptr, block_size());
if (result.is_error())
return result;
}
if (!data.read(entry.data + offset, count))
return EFAULT;
cache().mark_dirty(entry);
entry.has_data = true;
return KSuccess;
}
bool BlockBasedFileSystem::raw_read(BlockIndex index, UserOrKernelBuffer& buffer)
{
auto base_offset = index.value() * m_logical_block_size;
auto nread = file_description().read(buffer, base_offset, m_logical_block_size);
VERIFY(!nread.is_error());
VERIFY(nread.value() == m_logical_block_size);
return true;
}
bool BlockBasedFileSystem::raw_write(BlockIndex index, const UserOrKernelBuffer& buffer)
{
auto base_offset = index.value() * m_logical_block_size;
auto nwritten = file_description().write(base_offset, buffer, m_logical_block_size);
VERIFY(!nwritten.is_error());
VERIFY(nwritten.value() == m_logical_block_size);
return true;
}
bool BlockBasedFileSystem::raw_read_blocks(BlockIndex index, size_t count, UserOrKernelBuffer& buffer)
{
auto current = buffer;
for (auto block = index.value(); block < (index.value() + count); block++) {
if (!raw_read(BlockIndex { block }, current))
return false;
current = current.offset(logical_block_size());
}
return true;
}
bool BlockBasedFileSystem::raw_write_blocks(BlockIndex index, size_t count, const UserOrKernelBuffer& buffer)
{
auto current = buffer;
for (auto block = index.value(); block < (index.value() + count); block++) {
if (!raw_write(block, current))
return false;
current = current.offset(logical_block_size());
}
return true;
}
KResult BlockBasedFileSystem::write_blocks(BlockIndex index, unsigned count, const UserOrKernelBuffer& data, bool allow_cache)
{
VERIFY(m_logical_block_size);
dbgln_if(BBFS_DEBUG, "BlockBasedFileSystem::write_blocks {}, count={}", index, count);
for (unsigned i = 0; i < count; ++i) {
auto result = write_block(BlockIndex { index.value() + i }, data.offset(i * block_size()), block_size(), 0, allow_cache);
if (result.is_error())
return result;
}
return KSuccess;
}
KResult BlockBasedFileSystem::read_block(BlockIndex index, UserOrKernelBuffer* buffer, size_t count, size_t offset, bool allow_cache) const
{
VERIFY(m_logical_block_size);
VERIFY(offset + count <= block_size());
dbgln_if(BBFS_DEBUG, "BlockBasedFileSystem::read_block {}", index);
MutexLocker locker(m_cache_lock);
if (!allow_cache) {
const_cast<BlockBasedFileSystem*>(this)->flush_specific_block_if_needed(index);
auto base_offset = index.value() * block_size() + offset;
auto nread = file_description().read(*buffer, base_offset, count);
if (nread.is_error())
return nread.error();
VERIFY(nread.value() == count);
return KSuccess;
}
auto& entry = cache().get(index);
if (!entry.has_data) {
auto base_offset = index.value() * block_size();
auto entry_data_buffer = UserOrKernelBuffer::for_kernel_buffer(entry.data);
auto nread = file_description().read(entry_data_buffer, base_offset, block_size());
if (nread.is_error())
return nread.error();
VERIFY(nread.value() == block_size());
entry.has_data = true;
}
if (buffer && !buffer->write(entry.data + offset, count))
return EFAULT;
return KSuccess;
}
KResult BlockBasedFileSystem::read_blocks(BlockIndex index, unsigned count, UserOrKernelBuffer& buffer, bool allow_cache) const
{
VERIFY(m_logical_block_size);
if (!count)
return EINVAL;
if (count == 1)
return read_block(index, &buffer, block_size(), 0, allow_cache);
auto out = buffer;
for (unsigned i = 0; i < count; ++i) {
auto result = read_block(BlockIndex { index.value() + i }, &out, block_size(), 0, allow_cache);
if (result.is_error())
return result;
out = out.offset(block_size());
}
return KSuccess;
}
void BlockBasedFileSystem::flush_specific_block_if_needed(BlockIndex index)
{
MutexLocker locker(m_cache_lock);
if (!cache().is_dirty())
return;
Vector<CacheEntry*, 32> cleaned_entries;
cache().for_each_dirty_entry([&](CacheEntry& entry) {
if (entry.block_index != index) {
size_t base_offset = entry.block_index.value() * block_size();
auto entry_data_buffer = UserOrKernelBuffer::for_kernel_buffer(entry.data);
[[maybe_unused]] auto rc = file_description().write(base_offset, entry_data_buffer, block_size());
cleaned_entries.append(&entry);
}
});
// NOTE: We make a separate pass to mark entries clean since marking them clean
// moves them out of the dirty list which would disturb the iteration above.
for (auto* entry : cleaned_entries)
cache().mark_clean(*entry);
}
void BlockBasedFileSystem::flush_writes_impl()
{
MutexLocker locker(m_cache_lock);
if (!cache().is_dirty())
return;
u32 count = 0;
cache().for_each_dirty_entry([&](CacheEntry& entry) {
auto base_offset = entry.block_index.value() * block_size();
auto entry_data_buffer = UserOrKernelBuffer::for_kernel_buffer(entry.data);
[[maybe_unused]] auto rc = file_description().write(base_offset, entry_data_buffer, block_size());
++count;
});
cache().mark_all_clean();
dbgln("{}: Flushed {} blocks to disk", class_name(), count);
}
void BlockBasedFileSystem::flush_writes()
{
flush_writes_impl();
}
DiskCache& BlockBasedFileSystem::cache() const
{
if (!m_cache)
m_cache = make<DiskCache>(const_cast<BlockBasedFileSystem&>(*this));
return *m_cache;
}
}
|