summaryrefslogtreecommitdiff
path: root/Kernel/Devices/SerialDevice.cpp
blob: 50d603e118b3bce1d3c89287ecbb739167608f7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <Kernel/Arch/x86/IO.h>
#include <Kernel/Devices/DeviceManagement.h>
#include <Kernel/Devices/SerialDevice.h>
#include <Kernel/Sections.h>

namespace Kernel {

#define SERIAL_COM1_ADDR 0x3F8
#define SERIAL_COM2_ADDR 0x2F8
#define SERIAL_COM3_ADDR 0x3E8
#define SERIAL_COM4_ADDR 0x2E8

UNMAP_AFTER_INIT NonnullRefPtr<SerialDevice> SerialDevice::must_create(size_t com_number)
{
    // FIXME: This way of blindly doing release_value is really not a good thing, find
    // a way to propagate errors back.
    RefPtr<SerialDevice> serial_device;
    switch (com_number) {
    case 0: {
        serial_device = DeviceManagement::try_create_device<SerialDevice>(IOAddress(SERIAL_COM1_ADDR), 64).release_value();
        break;
    }
    case 1: {
        serial_device = DeviceManagement::try_create_device<SerialDevice>(IOAddress(SERIAL_COM2_ADDR), 65).release_value();
        break;
    }
    case 2: {
        serial_device = DeviceManagement::try_create_device<SerialDevice>(IOAddress(SERIAL_COM3_ADDR), 66).release_value();
        break;
    }
    case 3: {
        serial_device = DeviceManagement::try_create_device<SerialDevice>(IOAddress(SERIAL_COM4_ADDR), 67).release_value();
        break;
    }
    default:
        break;
    }
    return serial_device.release_nonnull();
}

UNMAP_AFTER_INIT SerialDevice::SerialDevice(IOAddress base_addr, unsigned minor)
    : CharacterDevice(4, minor)
    , m_base_addr(base_addr)
{
    initialize();
}

UNMAP_AFTER_INIT SerialDevice::~SerialDevice() = default;

bool SerialDevice::can_read(const OpenFileDescription&, u64) const
{
    return (get_line_status() & DataReady) != 0;
}

ErrorOr<size_t> SerialDevice::read(OpenFileDescription&, u64, UserOrKernelBuffer& buffer, size_t size)
{
    if (!size)
        return 0;

    SpinlockLocker lock(m_serial_lock);
    if (!(get_line_status() & DataReady))
        return 0;

    return buffer.write_buffered<128>(size, [&](Bytes bytes) {
        for (auto& byte : bytes)
            byte = m_base_addr.in<u8>();
        return bytes.size();
    });
}

bool SerialDevice::can_write(const OpenFileDescription&, u64) const
{
    return (get_line_status() & EmptyTransmitterHoldingRegister) != 0;
}

ErrorOr<size_t> SerialDevice::write(OpenFileDescription& description, u64, const UserOrKernelBuffer& buffer, size_t size)
{
    if (!size)
        return 0;

    SpinlockLocker lock(m_serial_lock);
    if (!can_write(description, size))
        return EAGAIN;

    return buffer.read_buffered<128>(size, [&](ReadonlyBytes bytes) {
        for (const auto& byte : bytes)
            put_char(byte);
        return bytes.size();
    });
}

void SerialDevice::put_char(char ch)
{
    while ((get_line_status() & EmptyTransmitterHoldingRegister) == 0)
        ;

    if (ch == '\n' && !m_last_put_char_was_carriage_return)
        m_base_addr.out<u8>('\r');

    m_base_addr.out<u8>(ch);

    m_last_put_char_was_carriage_return = (ch == '\r');
}

UNMAP_AFTER_INIT void SerialDevice::initialize()
{
    set_interrupts(false);
    set_baud(Baud38400);
    set_line_control(None, One, EightBits);
    set_fifo_control(EnableFIFO | ClearReceiveFIFO | ClearTransmitFIFO | TriggerLevel4);
    set_modem_control(RequestToSend | DataTerminalReady);
}

UNMAP_AFTER_INIT void SerialDevice::set_interrupts(bool interrupt_enable)
{
    m_interrupt_enable = interrupt_enable;

    m_base_addr.offset(1).out<u8>(interrupt_enable);
}

void SerialDevice::set_baud(Baud baud)
{
    m_baud = baud;

    m_base_addr.offset(3).out<u8>(m_base_addr.offset(3).in<u8>() | 0x80); // turn on DLAB
    m_base_addr.out<u8>(((u8)(baud)) & 0xff);                             // lower half of divisor
    m_base_addr.offset(1).out<u8>(((u8)(baud)) >> 2);                     // upper half of divisor
    m_base_addr.offset(3).out<u8>(m_base_addr.offset(3).in<u8>() & 0x7f); // turn off DLAB
}

void SerialDevice::set_fifo_control(u8 fifo_control)
{
    m_fifo_control = fifo_control;

    m_base_addr.offset(2).out<u8>(fifo_control);
}

void SerialDevice::set_line_control(ParitySelect parity_select, StopBits stop_bits, WordLength word_length)
{
    m_parity_select = parity_select;
    m_stop_bits = stop_bits;
    m_word_length = word_length;

    m_base_addr.offset(3).out<u8>((m_base_addr.offset(3).in<u8>() & ~0x3f) | parity_select | stop_bits | word_length);
}

void SerialDevice::set_break_enable(bool break_enable)
{
    m_break_enable = break_enable;

    m_base_addr.offset(3).out<u8>(m_base_addr.offset(3).in<u8>() & (break_enable ? 0xff : 0xbf));
}

void SerialDevice::set_modem_control(u8 modem_control)
{
    m_modem_control = modem_control;

    m_base_addr.offset(4).out<u8>(modem_control);
}

u8 SerialDevice::get_line_status() const
{
    return m_base_addr.offset(5).in<u8>();
}

}