1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
/*
* Copyright (c) 2023, Jelle Raaijmakers <jelle@gmta.nl>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Stream.h"
#include <AK/Optional.h>
#include <Kernel/Devices/Audio/IntelHDA/Controller.h>
#include <Kernel/Devices/Audio/IntelHDA/Format.h>
#include <Kernel/Devices/Audio/IntelHDA/Timing.h>
#include <Kernel/Memory/MemoryManager.h>
namespace Kernel::Audio::IntelHDA {
Stream::~Stream()
{
if (m_running)
MUST(stop());
}
u32 Stream::read_control()
{
// 3.3.35: Input/Output/Bidirectional Stream Descriptor Control
u32 control_and_status = m_stream_io_window->read32(StreamRegisterOffset::Control);
return control_and_status & 0xffffffu;
}
void Stream::write_control(u32 control)
{
// 3.3.35: Input/Output/Bidirectional Stream Descriptor Control
auto status = m_stream_io_window->read8(StreamRegisterOffset::Status);
u32 control_and_status = (status << 24)
| ((m_stream_number & 0xf) << 20)
| (control & 0xfffffu);
m_stream_io_window->write32(StreamRegisterOffset::Control, control_and_status);
}
static constexpr u8 container_size_in_bytes(u8 bit_size)
{
// 4.5.1: Stream Data In Memory
if (bit_size > 16)
return 4;
else if (bit_size > 8)
return 2;
return 1;
}
ErrorOr<void> Stream::initialize_buffer()
{
VERIFY(m_format_parameters.sample_rate > 0);
VERIFY(m_format_parameters.pcm_bits > 0);
VERIFY(m_format_parameters.number_of_channels > 0);
// 4.5.1: Stream Data In Memory
// NOTE: we ignore the number of blocks per packet since we are only required to have an integer number
// of samples per buffer, and we always have at least one packet per buffer.
size_t block_size_in_bytes = container_size_in_bytes(m_format_parameters.pcm_bits) * m_format_parameters.number_of_channels;
size_t number_of_blocks_in_buffer = PAGE_SIZE / block_size_in_bytes;
VERIFY(number_of_blocks_in_buffer > 0);
size_t number_of_blocks_required_for_cyclic_buffer_size = ceil_div(cyclic_buffer_size_in_ms * m_format_parameters.sample_rate, 1'000);
size_t number_of_buffers_required_for_cyclic_buffer_size = AK::max(ceil_div(number_of_blocks_required_for_cyclic_buffer_size, number_of_blocks_in_buffer), minimum_number_of_buffers);
VERIFY(number_of_buffers_required_for_cyclic_buffer_size > 0 && number_of_buffers_required_for_cyclic_buffer_size <= 256);
size_t cyclic_buffer_size_in_bytes = number_of_buffers_required_for_cyclic_buffer_size * PAGE_SIZE;
TRY(m_buffers.with([&](auto& buffers) -> ErrorOr<void> {
buffers = TRY(MM.allocate_dma_buffer_pages(cyclic_buffer_size_in_bytes, "IntelHDA Stream Buffers"sv, Memory::Region::Access::ReadWrite));
// 3.3.38 Input/Output/Bidirectional Stream Descriptor Cyclic Buffer Length
m_stream_io_window->write32(StreamRegisterOffset::CyclicBufferLength, buffers->size());
// 3.3.39: Input/Output/Bidirectional Stream Descriptor Last Valid Index
VERIFY(number_of_buffers_required_for_cyclic_buffer_size <= 256);
m_stream_io_window->write16(StreamRegisterOffset::LastValidIndex, number_of_buffers_required_for_cyclic_buffer_size - 1);
// 3.6.2: Buffer Descriptor List
m_buffer_descriptor_list = TRY(MM.allocate_dma_buffer_page("IntelHDA Stream BDL"sv, Memory::Region::Access::ReadWrite));
auto bdl_physical_address = m_buffer_descriptor_list->physical_page(0)->paddr().get();
m_stream_io_window->write32(StreamRegisterOffset::BDLLowerBaseAddress, bdl_physical_address & 0xffffffffu);
m_stream_io_window->write32(StreamRegisterOffset::BDLUpperBaseAddress, bdl_physical_address >> 32);
// 3.6.3: Buffer Descriptor List Entry
auto* buffer_descriptor_entry = m_buffer_descriptor_list->vaddr().as_ptr();
for (u8 buffer_index = 0; buffer_index < buffers->page_count(); ++buffer_index) {
auto* entry = buffer_descriptor_entry + buffer_index * 0x10;
*bit_cast<u64*>(entry) = buffers->physical_page(buffer_index)->paddr().get();
*bit_cast<u32*>(entry + 8) = PAGE_SIZE;
*bit_cast<u32*>(entry + 12) = 0;
}
return {};
}));
return {};
}
ErrorOr<void> Stream::reset()
{
// 3.3.35: Input/Output/Bidirectional Stream Descriptor Control
if (m_running)
TRY(stop());
// Writing a 1 causes the corresponding stream to be reset. The Stream Descriptor registers
// (except the SRST bit itself), FIFO's, and cadence generator for the corresponding stream
// are reset.
auto control = read_control();
control |= StreamControlFlag::StreamReset;
write_control(control);
// After the stream hardware has completed sequencing into the reset state, it will report a
// 1 in this bit. Software must read a 1 from this bit to verify that the stream is in reset.
TRY(wait_until(frame_delay_in_microseconds(1), controller_timeout_in_microseconds, [&]() {
control = read_control();
return (control & StreamControlFlag::StreamReset) > 0;
}));
// Writing a 0 causes the corresponding stream to exit reset.
control &= ~StreamControlFlag::StreamReset;
write_control(control);
// When the stream hardware is ready to begin operation, it will report a 0 in this bit.
// Software must read a 0 from this bit before accessing any of the stream registers
return wait_until(frame_delay_in_microseconds(1), controller_timeout_in_microseconds, [&]() {
control = read_control();
return (control & StreamControlFlag::StreamReset) == 0;
});
}
void Stream::start()
{
// 3.3.35: Input/Output/Bidirectional Stream Descriptor Control
VERIFY(!m_running);
dbgln_if(INTEL_HDA_DEBUG, "IntelHDA: Starting stream");
auto control = read_control();
control |= StreamControlFlag::StreamRun;
write_control(control);
m_running = true;
}
ErrorOr<void> Stream::stop()
{
// 3.3.35: Input/Output/Bidirectional Stream Descriptor Control
VERIFY(m_running);
dbgln_if(INTEL_HDA_DEBUG, "IntelHDA: Stopping stream");
auto control = read_control();
control &= ~StreamControlFlag::StreamRun;
write_control(control);
// 4.5.4: Stopping Streams
// Wait until RUN bit is 0
TRY(wait_until(frame_delay_in_microseconds(1), controller_timeout_in_microseconds, [&]() {
control = read_control();
return (control & StreamControlFlag::StreamRun) == 0;
}));
m_running = false;
m_buffer_position = 0;
return {};
}
ErrorOr<void> Stream::set_format(FormatParameters format)
{
// Reset the stream so we can set a new buffer
TRY(reset());
// Write the sample rate payload
auto format_payload = TRY(encode_format(format));
m_stream_io_window->write16(StreamRegisterOffset::Format, format_payload);
m_format_parameters = format;
// Re-initialize the bufer
TRY(initialize_buffer());
return {};
}
ErrorOr<size_t> OutputStream::write(UserOrKernelBuffer const& data, size_t length)
{
auto wait_until_buffer_index_can_be_written = [&](u8 buffer_index) {
while (m_running) {
auto link_position = m_stream_io_window->read32(StreamRegisterOffset::LinkPosition);
auto read_buffer_index = link_position / PAGE_SIZE;
if (read_buffer_index != buffer_index)
return;
auto microseconds_to_wait = ((read_buffer_index + 1) * PAGE_SIZE - link_position)
/ m_format_parameters.number_of_channels
* 8 / m_format_parameters.pcm_bits
* 1'000'000 / m_format_parameters.sample_rate;
dbgln_if(INTEL_HDA_DEBUG, "IntelHDA: Waiting {} µs until buffer {} becomes writeable", microseconds_to_wait, buffer_index);
// NOTE: we don't care about the reason for interruption - we simply calculate the next delay
[[maybe_unused]] auto block_result = Thread::current()->sleep(Duration::from_microseconds(microseconds_to_wait));
}
};
auto write_into_single_buffer = [&](UserOrKernelBuffer const& data, size_t data_offset, size_t length, size_t offset_within_buffer) -> ErrorOr<u8> {
u8 buffer_index = m_buffer_position / PAGE_SIZE;
VERIFY(length <= PAGE_SIZE - offset_within_buffer);
wait_until_buffer_index_can_be_written(buffer_index);
TRY(m_buffers.with([&](auto& buffers) -> ErrorOr<void> {
// NOTE: if the buffers were reinitialized, we might point to an out of bounds page
if (buffer_index >= buffers->page_count())
return EAGAIN;
auto* buffer = buffers->vaddr_from_page_index(buffer_index).as_ptr() + offset_within_buffer;
TRY(data.read(buffer, data_offset, length));
// Cycle back to position 0 when we reach the end
m_buffer_position += length;
VERIFY(m_buffer_position <= buffers->size());
if (m_buffer_position == buffers->size())
m_buffer_position = 0;
return {};
}));
return buffer_index;
};
// FIXME: support PCM bit sizes other than 16
VERIFY(m_format_parameters.pcm_bits == 16);
// Split up input data into separate buffer writes
size_t length_remaining = length;
size_t data_offset = 0;
u8 last_buffer_index = 0;
while (length_remaining > 0) {
size_t offset_within_current_buffer = m_buffer_position % PAGE_SIZE;
size_t length_to_write = AK::min(length_remaining, PAGE_SIZE - offset_within_current_buffer);
last_buffer_index = TRY(write_into_single_buffer(data, data_offset, length_to_write, offset_within_current_buffer));
data_offset += length_to_write;
length_remaining -= length_to_write;
}
// Start this stream if not already running
// 3.3.39: LVI must be at least 1; i.e., there must be at least two valid entries in
// the buffer descriptor list before DMA operations can begin.
if (!m_running && last_buffer_index >= 2)
start();
return length;
}
}
|