summaryrefslogtreecommitdiff
path: root/Kernel/Bus/VirtIO/Queue.h
blob: b2604e7468923f8a58bd0bceaa71bad162b365ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
 * Copyright (c) 2021, the SerenityOS developers.
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <Kernel/Locking/Spinlock.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/ScatterGatherList.h>

namespace Kernel::VirtIO {

class Device;
class QueueChain;

#define VIRTQ_DESC_F_NEXT 1
#define VIRTQ_DESC_F_INDIRECT 4

#define VIRTQ_AVAIL_F_NO_INTERRUPT 1
#define VIRTQ_USED_F_NO_NOTIFY 1

enum class BufferType {
    DeviceReadable = 0,
    DeviceWritable = 2
};

class Queue {
public:
    Queue(u16 queue_size, u16 notify_offset);
    ~Queue();

    bool is_null() const { return !m_queue_region; }
    u16 notify_offset() const { return m_notify_offset; }

    void enable_interrupts();
    void disable_interrupts();

    PhysicalAddress descriptor_area() const { return to_physical(m_descriptors.ptr()); }
    PhysicalAddress driver_area() const { return to_physical(m_driver.ptr()); }
    PhysicalAddress device_area() const { return to_physical(m_device.ptr()); }

    bool new_data_available() const;
    bool has_free_slots() const;
    Optional<u16> take_free_slot();
    QueueChain pop_used_buffer_chain(size_t& used);
    void discard_used_buffers();

    Spinlock& lock() { return m_lock; }

    bool should_notify() const;

private:
    void reclaim_buffer_chain(u16 chain_start_index, u16 chain_end_index, size_t length_of_chain);

    PhysicalAddress to_physical(const void* ptr) const
    {
        auto offset = FlatPtr(ptr) - m_queue_region->vaddr().get();
        return m_queue_region->physical_page(0)->paddr().offset(offset);
    }
    struct [[gnu::packed]] QueueDescriptor {
        u64 address;
        u32 length;
        u16 flags;
        u16 next;
    };

    struct [[gnu::packed]] QueueDriver {
        u16 flags;
        u16 index;
        u16 rings[];
    };

    struct [[gnu::packed]] QueueDeviceItem {
        u32 index;
        u32 length;
    };

    struct [[gnu::packed]] QueueDevice {
        u16 flags;
        u16 index;
        QueueDeviceItem rings[];
    };

    const u16 m_queue_size;
    const u16 m_notify_offset;
    u16 m_free_buffers;
    u16 m_free_head { 0 };
    u16 m_used_tail { 0 };
    u16 m_driver_index_shadow { 0 };

    OwnPtr<QueueDescriptor> m_descriptors { nullptr };
    OwnPtr<QueueDriver> m_driver { nullptr };
    OwnPtr<QueueDevice> m_device { nullptr };
    OwnPtr<Memory::Region> m_queue_region;
    Spinlock m_lock;

    friend class QueueChain;
};

class QueueChain {
public:
    QueueChain(Queue& queue)
        : m_queue(queue)
    {
    }

    QueueChain(Queue& queue, u16 start_index, u16 end_index, size_t chain_length)
        : m_queue(queue)
        , m_start_of_chain_index(start_index)
        , m_end_of_chain_index(end_index)
        , m_chain_length(chain_length)
    {
    }

    QueueChain(QueueChain&& other)
        : m_queue(other.m_queue)
        , m_start_of_chain_index(move(other.m_start_of_chain_index))
        , m_end_of_chain_index(move(other.m_end_of_chain_index))
        , m_chain_length(other.m_chain_length)
        , m_chain_has_writable_pages(other.m_chain_has_writable_pages)
    {
        other.m_start_of_chain_index = {};
        other.m_end_of_chain_index = {};
        other.m_chain_length = 0;
        other.m_chain_has_writable_pages = false;
    }

    QueueChain& operator=(QueueChain&& other)
    {
        VERIFY(&m_queue == &other.m_queue);
        ensure_chain_is_empty();
        m_start_of_chain_index = other.m_start_of_chain_index;
        m_end_of_chain_index = other.m_end_of_chain_index;
        m_chain_length = other.m_chain_length;
        m_chain_has_writable_pages = other.m_chain_has_writable_pages;
        other.m_start_of_chain_index = {};
        other.m_end_of_chain_index = {};
        other.m_chain_length = 0;
        other.m_chain_has_writable_pages = false;
        return *this;
    }

    ~QueueChain()
    {
        ensure_chain_is_empty();
    }

    [[nodiscard]] Queue& queue() const { return m_queue; }
    [[nodiscard]] bool is_empty() const { return m_chain_length == 0; }
    [[nodiscard]] size_t length() const { return m_chain_length; }
    bool add_buffer_to_chain(PhysicalAddress buffer_start, size_t buffer_length, BufferType buffer_type);
    void submit_to_queue();
    void release_buffer_slots_to_queue();

    void for_each(Function<void(PhysicalAddress, size_t)> callback)
    {
        VERIFY(m_queue.lock().is_locked());
        if (!m_start_of_chain_index.has_value())
            return;
        auto index = m_start_of_chain_index.value();
        for (size_t i = 0; i < m_chain_length; ++i) {
            auto addr = m_queue.m_descriptors[index].address;
            auto length = m_queue.m_descriptors[index].length;
            callback(PhysicalAddress(addr), length);
            index = m_queue.m_descriptors[index].next;
        }
    }

private:
    void ensure_chain_is_empty() const
    {
        VERIFY(!m_start_of_chain_index.has_value());
        VERIFY(!m_end_of_chain_index.has_value());
        VERIFY(m_chain_length == 0);
    }

    Queue& m_queue;
    Optional<u16> m_start_of_chain_index {};
    Optional<u16> m_end_of_chain_index {};
    size_t m_chain_length {};
    bool m_chain_has_writable_pages { false };
};

}