summaryrefslogtreecommitdiff
path: root/Kernel/Bus/PCI/MMIOAccess.cpp
blob: 6811f4df8c75a3eb15fc1cc17c87d8af086c0c1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*
 * Copyright (c) 2021, Liav A. <liavalb@hotmail.co.il>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/ByteReader.h>
#include <AK/Optional.h>
#include <Kernel/Arch/x86/InterruptDisabler.h>
#include <Kernel/Bus/PCI/MMIOAccess.h>
#include <Kernel/Debug.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Sections.h>

namespace Kernel {
namespace PCI {

#define MEMORY_RANGE_PER_BUS (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS)

u32 MMIOAccess::segment_count() const
{
    return m_segments.size();
}

u8 MMIOAccess::segment_start_bus(u32 seg) const
{
    auto segment = m_segments.get(seg);
    VERIFY(segment.has_value());
    return segment.value().get_start_bus();
}

u8 MMIOAccess::segment_end_bus(u32 seg) const
{
    auto segment = m_segments.get(seg);
    VERIFY(segment.has_value());
    return segment.value().get_end_bus();
}

PhysicalAddress MMIOAccess::determine_memory_mapped_bus_region(u32 segment, u8 bus) const
{
    VERIFY(bus >= segment_start_bus(segment) && bus <= segment_end_bus(segment));
    auto seg = m_segments.get(segment);
    VERIFY(seg.has_value());
    return seg.value().get_paddr().offset(MEMORY_RANGE_PER_BUS * (bus - seg.value().get_start_bus()));
}

UNMAP_AFTER_INIT void MMIOAccess::initialize(PhysicalAddress mcfg)
{
    if (!Access::is_initialized()) {
        new MMIOAccess(mcfg);
        dbgln_if(PCI_DEBUG, "PCI: MMIO access initialised.");
    }
}

UNMAP_AFTER_INIT MMIOAccess::MMIOAccess(PhysicalAddress p_mcfg)
    : m_mcfg(p_mcfg)
{
    dmesgln("PCI: Using MMIO for PCI configuration space access");

    auto checkup_region = MM.allocate_kernel_region(p_mcfg.page_base(), (PAGE_SIZE * 2), "PCI MCFG Checkup", Region::Access::Read | Region::Access::Write);
    dbgln_if(PCI_DEBUG, "PCI: Checking MCFG Table length to choose the correct mapping size");
    auto* sdt = (ACPI::Structures::SDTHeader*)checkup_region->vaddr().offset(p_mcfg.offset_in_page()).as_ptr();
    u32 length = sdt->length;
    u8 revision = sdt->revision;

    dbgln("PCI: MCFG, length: {}, revision: {}", length, revision);
    checkup_region->unmap();

    auto mcfg_region = MM.allocate_kernel_region(p_mcfg.page_base(), page_round_up(length) + PAGE_SIZE, "PCI Parsing MCFG", Region::Access::Read | Region::Access::Write);

    auto& mcfg = *(ACPI::Structures::MCFG*)mcfg_region->vaddr().offset(p_mcfg.offset_in_page()).as_ptr();
    dbgln_if(PCI_DEBUG, "PCI: Checking MCFG @ {}, {}", VirtualAddress(&mcfg), PhysicalAddress(p_mcfg.get()));

    for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI::Structures::MCFG)) / sizeof(ACPI::Structures::PCI_MMIO_Descriptor)); index++) {
        u8 start_bus = mcfg.descriptors[index].start_pci_bus;
        u8 end_bus = mcfg.descriptors[index].end_pci_bus;
        u32 lower_addr = mcfg.descriptors[index].base_addr;

        m_segments.set(index, { PhysicalAddress(lower_addr), start_bus, end_bus });
        dmesgln("PCI: New PCI segment @ {}, PCI buses ({}-{})", PhysicalAddress { lower_addr }, start_bus, end_bus);
    }
    mcfg_region->unmap();
    dmesgln("PCI: MMIO segments: {}", m_segments.size());

    InterruptDisabler disabler;
    VERIFY(m_segments.contains(0));

    // Note: we need to map this region before enumerating the hardware and adding
    // PCI::PhysicalID objects to the vector, because get_capabilities calls
    // PCI::read16 which will need this region to be mapped.
    u8 start_bus = m_segments.get(0).value().get_start_bus();
    m_mapped_region = MM.allocate_kernel_region(determine_memory_mapped_bus_region(0, start_bus), MEMORY_RANGE_PER_BUS, "PCI ECAM", Region::Access::Read | Region::Access::Write);
    m_mapped_bus = start_bus;
    dbgln_if(PCI_DEBUG, "PCI: First PCI ECAM Mapped region for starting bus {} @ {} {}", start_bus, m_mapped_region->vaddr(), m_mapped_region->physical_page(0)->paddr());

    enumerate_hardware([&](const Address& address, ID id) {
        m_physical_ids.append({ address, id, get_capabilities(address) });
    });
}
void MMIOAccess::map_bus_region(u32 segment, u8 bus)
{
    VERIFY(m_access_lock.is_locked());
    if (m_mapped_bus == bus)
        return;
    m_mapped_region = MM.allocate_kernel_region(determine_memory_mapped_bus_region(segment, bus), MEMORY_RANGE_PER_BUS, "PCI ECAM", Region::Access::Read | Region::Access::Write);
    m_mapped_bus = bus;
    dbgln_if(PCI_DEBUG, "PCI: New PCI ECAM Mapped region for bus {} @ {} {}", bus, m_mapped_region->vaddr(), m_mapped_region->physical_page(0)->paddr());
}

VirtualAddress MMIOAccess::get_device_configuration_space(Address address)
{
    VERIFY(m_access_lock.is_locked());
    dbgln_if(PCI_DEBUG, "PCI: Getting device configuration space for {}", address);
    map_bus_region(address.seg(), address.bus());
    return m_mapped_region->vaddr().offset(PCI_MMIO_CONFIG_SPACE_SIZE * address.function() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE) * address.device());
}

u8 MMIOAccess::read8_field(Address address, u32 field)
{
    ScopedSpinLock lock(m_access_lock);
    VERIFY(field <= 0xfff);
    dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 8-bit field {:#08x} for {}", field, address);
    return *((volatile u8*)(get_device_configuration_space(address).get() + (field & 0xfff)));
}

u16 MMIOAccess::read16_field(Address address, u32 field)
{
    ScopedSpinLock lock(m_access_lock);
    VERIFY(field < 0xfff);
    dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 16-bit field {:#08x} for {}", field, address);
    u16 data = 0;
    ByteReader::load<u16>(get_device_configuration_space(address).offset(field & 0xfff).as_ptr(), data);
    return data;
}

u32 MMIOAccess::read32_field(Address address, u32 field)
{
    ScopedSpinLock lock(m_access_lock);
    VERIFY(field <= 0xffc);
    dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 32-bit field {:#08x} for {}", field, address);
    u32 data = 0;
    ByteReader::load<u32>(get_device_configuration_space(address).offset(field & 0xfff).as_ptr(), data);
    return data;
}

void MMIOAccess::write8_field(Address address, u32 field, u8 value)
{
    ScopedSpinLock lock(m_access_lock);
    VERIFY(field <= 0xfff);
    dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 8-bit field {:#08x}, value={:#02x} for {}", field, value, address);
    *((volatile u8*)(get_device_configuration_space(address).get() + (field & 0xfff))) = value;
}
void MMIOAccess::write16_field(Address address, u32 field, u16 value)
{
    ScopedSpinLock lock(m_access_lock);
    VERIFY(field < 0xfff);
    dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 16-bit field {:#08x}, value={:#02x} for {}", field, value, address);
    ByteReader::store<u16>(get_device_configuration_space(address).offset(field & 0xfff).as_ptr(), value);
}
void MMIOAccess::write32_field(Address address, u32 field, u32 value)
{
    ScopedSpinLock lock(m_access_lock);
    VERIFY(field <= 0xffc);
    dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 32-bit field {:#08x}, value={:#02x} for {}", field, value, address);
    ByteReader::store<u32>(get_device_configuration_space(address).offset(field & 0xfff).as_ptr(), value);
}

void MMIOAccess::enumerate_hardware(Function<void(Address, ID)> callback)
{
    for (u16 seg = 0; seg < m_segments.size(); seg++) {
        dbgln_if(PCI_DEBUG, "PCI: Enumerating Memory mapped IO segment {}", seg);
        // Single PCI host controller.
        if ((early_read8_field(Address(seg), PCI_HEADER_TYPE) & 0x80) == 0) {
            enumerate_bus(-1, 0, callback, true);
            return;
        }

        // Multiple PCI host controllers.
        for (u8 function = 0; function < 8; ++function) {
            if (early_read16_field(Address(seg, 0, 0, function), PCI_VENDOR_ID) == PCI_NONE)
                break;
            enumerate_bus(-1, function, callback, false);
        }
    }
}

MMIOAccess::MMIOSegment::MMIOSegment(PhysicalAddress segment_base_addr, u8 start_bus, u8 end_bus)
    : m_base_addr(segment_base_addr)
    , m_start_bus(start_bus)
    , m_end_bus(end_bus)
{
}

u8 MMIOAccess::MMIOSegment::get_start_bus() const
{
    return m_start_bus;
}

u8 MMIOAccess::MMIOSegment::get_end_bus() const
{
    return m_end_bus;
}

size_t MMIOAccess::MMIOSegment::get_size() const
{
    return (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS * (get_end_bus() - get_start_bus()));
}

PhysicalAddress MMIOAccess::MMIOSegment::get_paddr() const
{
    return m_base_addr;
}

}
}