summaryrefslogtreecommitdiff
path: root/Kernel/Bus/PCI/Access.cpp
blob: 5a0318f42f1ea4aa404880adcd930a389611fd31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*
 * Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/ByteReader.h>
#include <AK/Error.h>
#include <AK/HashTable.h>
#if ARCH(X86_64)
#    include <Kernel/Arch/x86_64/PCI/Controller/HostBridge.h>
#endif
#include <Kernel/Bus/PCI/Access.h>
#include <Kernel/Bus/PCI/Controller/MemoryBackedHostBridge.h>
#include <Kernel/Bus/PCI/Initializer.h>
#include <Kernel/Debug.h>
#include <Kernel/Firmware/ACPI/Definitions.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/Region.h>
#include <Kernel/Memory/TypedMapping.h>
#include <Kernel/Sections.h>

namespace Kernel::PCI {

#define PCI_MMIO_CONFIG_SPACE_SIZE 4096

static Access* s_access;

Access& Access::the()
{
    if (s_access == nullptr) {
        VERIFY_NOT_REACHED(); // We failed to initialize the PCI subsystem, so stop here!
    }
    return *s_access;
}

bool Access::is_initialized()
{
    return (s_access != nullptr);
}

bool Access::is_hardware_disabled()
{
    return g_pci_access_io_probe_failed;
}

bool Access::is_disabled()
{
    return g_pci_access_is_disabled_from_commandline || g_pci_access_io_probe_failed;
}

UNMAP_AFTER_INIT bool Access::find_and_register_pci_host_bridges_from_acpi_mcfg_table(PhysicalAddress mcfg_table)
{
    u32 length = 0;
    u8 revision = 0;
    {
        auto mapped_mcfg_table_or_error = Memory::map_typed<ACPI::Structures::SDTHeader>(mcfg_table);
        if (mapped_mcfg_table_or_error.is_error()) {
            dbgln("Failed to map MCFG table");
            return false;
        }
        auto mapped_mcfg_table = mapped_mcfg_table_or_error.release_value();
        length = mapped_mcfg_table->length;
        revision = mapped_mcfg_table->revision;
    }

    if (length == sizeof(ACPI::Structures::SDTHeader))
        return false;

    dbgln("PCI: MCFG, length: {}, revision: {}", length, revision);

    if (Checked<size_t>::addition_would_overflow(length, PAGE_SIZE)) {
        dbgln("Overflow when adding extra page to allocation of length {}", length);
        return false;
    }
    length += PAGE_SIZE;
    auto region_size_or_error = Memory::page_round_up(length);
    if (region_size_or_error.is_error()) {
        dbgln("Failed to round up length of {} to pages", length);
        return false;
    }
    auto mcfg_region_or_error = MM.allocate_kernel_region(mcfg_table.page_base(), region_size_or_error.value(), "PCI Parsing MCFG"sv, Memory::Region::Access::ReadWrite);
    if (mcfg_region_or_error.is_error())
        return false;
    auto& mcfg = *(ACPI::Structures::MCFG*)mcfg_region_or_error.value()->vaddr().offset(mcfg_table.offset_in_page()).as_ptr();
    dbgln_if(PCI_DEBUG, "PCI: Checking MCFG @ {}, {}", VirtualAddress(&mcfg), mcfg_table);
    for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI::Structures::MCFG)) / sizeof(ACPI::Structures::PCI_MMIO_Descriptor)); index++) {
        u8 start_bus = mcfg.descriptors[index].start_pci_bus;
        u8 end_bus = mcfg.descriptors[index].end_pci_bus;
        u64 start_addr = mcfg.descriptors[index].base_addr;

        Domain pci_domain { index, start_bus, end_bus };
        dmesgln("PCI: New PCI domain @ {}, PCI buses ({}-{})", PhysicalAddress { start_addr }, start_bus, end_bus);
        auto host_bridge = MemoryBackedHostBridge::must_create(pci_domain, PhysicalAddress { start_addr });
        add_host_controller(move(host_bridge));
    }

    return true;
}

UNMAP_AFTER_INIT bool Access::initialize_for_multiple_pci_domains(PhysicalAddress mcfg_table)
{
    VERIFY(!Access::is_initialized());
    auto* access = new Access();
    if (!access->find_and_register_pci_host_bridges_from_acpi_mcfg_table(mcfg_table))
        return false;
    access->rescan_hardware();
    dbgln_if(PCI_DEBUG, "PCI: access for multiple PCI domain initialised.");
    return true;
}

#if ARCH(X86_64)
UNMAP_AFTER_INIT bool Access::initialize_for_one_pci_domain()
{
    VERIFY(!Access::is_initialized());
    auto* access = new Access();
    auto host_bridge = HostBridge::must_create_with_io_access();
    access->add_host_controller(move(host_bridge));
    access->rescan_hardware();
    dbgln_if(PCI_DEBUG, "PCI: access for one PCI domain initialised.");
    return true;
}
#endif

ErrorOr<void> Access::add_host_controller_and_scan_for_devices(NonnullOwnPtr<HostController> controller)
{
    SpinlockLocker locker(m_access_lock);
    SpinlockLocker scan_locker(m_scan_lock);
    auto domain_number = controller->domain_number();

    VERIFY(!m_host_controllers.contains(domain_number));
    // Note: We need to register the new controller as soon as possible, and
    // definitely before enumerating devices behind that.
    m_host_controllers.set(domain_number, move(controller));
    ErrorOr<void> error_or_void {};
    m_host_controllers.get(domain_number).value()->enumerate_attached_devices([&](EnumerableDeviceIdentifier const& device_identifier) -> IterationDecision {
        auto device_identifier_or_error = DeviceIdentifier::from_enumerable_identifier(device_identifier);
        if (device_identifier_or_error.is_error()) {
            error_or_void = device_identifier_or_error.release_error();
            return IterationDecision::Break;
        }
        m_device_identifiers.append(device_identifier_or_error.release_value());
        return IterationDecision::Continue;
    });
    return {};
}

UNMAP_AFTER_INIT void Access::add_host_controller(NonnullOwnPtr<HostController> controller)
{
    auto domain_number = controller->domain_number();
    m_host_controllers.set(domain_number, move(controller));
}

UNMAP_AFTER_INIT Access::Access()
{
    s_access = this;
}

UNMAP_AFTER_INIT void Access::rescan_hardware()
{
    SpinlockLocker locker(m_access_lock);
    SpinlockLocker scan_locker(m_scan_lock);
    VERIFY(m_device_identifiers.is_empty());
    ErrorOr<void> error_or_void {};
    for (auto it = m_host_controllers.begin(); it != m_host_controllers.end(); ++it) {
        (*it).value->enumerate_attached_devices([this, &error_or_void](EnumerableDeviceIdentifier device_identifier) -> IterationDecision {
            auto device_identifier_or_error = DeviceIdentifier::from_enumerable_identifier(device_identifier);
            if (device_identifier_or_error.is_error()) {
                error_or_void = device_identifier_or_error.release_error();
                return IterationDecision::Break;
            }
            m_device_identifiers.append(device_identifier_or_error.release_value());
            return IterationDecision::Continue;
        });
    }
    if (error_or_void.is_error()) {
        dmesgln("Failed during PCI Access::rescan_hardware due to {}", error_or_void.error());
        VERIFY_NOT_REACHED();
    }
}

ErrorOr<void> Access::fast_enumerate(Function<void(DeviceIdentifier const&)>& callback) const
{
    // Note: We hold the m_access_lock for a brief moment just to ensure we get
    // a complete Vector in case someone wants to mutate it.
    Vector<NonnullRefPtr<DeviceIdentifier>> device_identifiers;
    {
        SpinlockLocker locker(m_access_lock);
        VERIFY(!m_device_identifiers.is_empty());
        TRY(device_identifiers.try_extend(m_device_identifiers));
    }
    for (auto const& device_identifier : device_identifiers) {
        callback(device_identifier);
    }
    return {};
}

DeviceIdentifier const& Access::get_device_identifier(Address address) const
{
    for (auto& device_identifier : m_device_identifiers) {
        auto device_address = device_identifier->address();
        if (device_address.domain() == address.domain()
            && device_address.bus() == address.bus()
            && device_address.device() == address.device()
            && device_address.function() == address.function()) {
            return device_identifier;
        }
    }
    VERIFY_NOT_REACHED();
}

void Access::write8_field(DeviceIdentifier const& identifier, u32 field, u8 value)
{
    VERIFY(identifier.operation_lock().is_locked());
    SpinlockLocker locker(m_access_lock);
    VERIFY(m_host_controllers.contains(identifier.address().domain()));
    auto& controller = *m_host_controllers.get(identifier.address().domain()).value();
    controller.write8_field(identifier.address().bus(), identifier.address().device(), identifier.address().function(), field, value);
}
void Access::write16_field(DeviceIdentifier const& identifier, u32 field, u16 value)
{
    VERIFY(identifier.operation_lock().is_locked());
    SpinlockLocker locker(m_access_lock);
    VERIFY(m_host_controllers.contains(identifier.address().domain()));
    auto& controller = *m_host_controllers.get(identifier.address().domain()).value();
    controller.write16_field(identifier.address().bus(), identifier.address().device(), identifier.address().function(), field, value);
}
void Access::write32_field(DeviceIdentifier const& identifier, u32 field, u32 value)
{
    VERIFY(identifier.operation_lock().is_locked());
    SpinlockLocker locker(m_access_lock);
    VERIFY(m_host_controllers.contains(identifier.address().domain()));
    auto& controller = *m_host_controllers.get(identifier.address().domain()).value();
    controller.write32_field(identifier.address().bus(), identifier.address().device(), identifier.address().function(), field, value);
}

u8 Access::read8_field(DeviceIdentifier const& identifier, RegisterOffset field)
{
    VERIFY(identifier.operation_lock().is_locked());
    return read8_field(identifier, to_underlying(field));
}
u16 Access::read16_field(DeviceIdentifier const& identifier, RegisterOffset field)
{
    VERIFY(identifier.operation_lock().is_locked());
    return read16_field(identifier, to_underlying(field));
}

u8 Access::read8_field(DeviceIdentifier const& identifier, u32 field)
{
    VERIFY(identifier.operation_lock().is_locked());
    SpinlockLocker locker(m_access_lock);
    VERIFY(m_host_controllers.contains(identifier.address().domain()));
    auto& controller = *m_host_controllers.get(identifier.address().domain()).value();
    return controller.read8_field(identifier.address().bus(), identifier.address().device(), identifier.address().function(), field);
}
u16 Access::read16_field(DeviceIdentifier const& identifier, u32 field)
{
    VERIFY(identifier.operation_lock().is_locked());
    SpinlockLocker locker(m_access_lock);
    VERIFY(m_host_controllers.contains(identifier.address().domain()));
    auto& controller = *m_host_controllers.get(identifier.address().domain()).value();
    return controller.read16_field(identifier.address().bus(), identifier.address().device(), identifier.address().function(), field);
}
u32 Access::read32_field(DeviceIdentifier const& identifier, u32 field)
{
    VERIFY(identifier.operation_lock().is_locked());
    SpinlockLocker locker(m_access_lock);
    VERIFY(m_host_controllers.contains(identifier.address().domain()));
    auto& controller = *m_host_controllers.get(identifier.address().domain()).value();
    return controller.read32_field(identifier.address().bus(), identifier.address().device(), identifier.address().function(), field);
}

}