1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ByteReader.h>
#include <AK/Error.h>
#include <AK/HashTable.h>
#include <Kernel/Arch/x86/IO.h>
#include <Kernel/Bus/PCI/Access.h>
#include <Kernel/Debug.h>
#include <Kernel/Firmware/ACPI/Definitions.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/Region.h>
#include <Kernel/Sections.h>
namespace Kernel::PCI {
#define PCI_MMIO_CONFIG_SPACE_SIZE 4096
static Access* s_access;
Access& Access::the()
{
if (s_access == nullptr) {
VERIFY_NOT_REACHED(); // We failed to initialize the PCI subsystem, so stop here!
}
return *s_access;
}
bool Access::is_initialized()
{
return (s_access != nullptr);
}
UNMAP_AFTER_INIT bool Access::initialize_for_memory_access(PhysicalAddress mcfg_table)
{
if (Access::is_initialized())
return false;
auto* access = new Access(Access::AccessType::Memory);
if (!access->search_pci_domains_from_acpi_mcfg_table(mcfg_table))
return false;
access->rescan_hardware_with_memory_addressing();
dbgln_if(PCI_DEBUG, "PCI: MMIO access initialised.");
return true;
}
UNMAP_AFTER_INIT bool Access::search_pci_domains_from_acpi_mcfg_table(PhysicalAddress mcfg_table)
{
auto checkup_region_or_error = MM.allocate_kernel_region(mcfg_table.page_base(), (PAGE_SIZE * 2), "PCI MCFG Checkup", Memory::Region::Access::ReadWrite);
if (checkup_region_or_error.is_error())
return false;
dbgln_if(PCI_DEBUG, "PCI: Checking MCFG Table length to choose the correct mapping size");
auto* sdt = (ACPI::Structures::SDTHeader*)checkup_region_or_error.value()->vaddr().offset(mcfg_table.offset_in_page()).as_ptr();
u32 length = sdt->length;
u8 revision = sdt->revision;
dbgln("PCI: MCFG, length: {}, revision: {}", length, revision);
auto mcfg_region_or_error = MM.allocate_kernel_region(mcfg_table.page_base(), Memory::page_round_up(length) + PAGE_SIZE, "PCI Parsing MCFG", Memory::Region::Access::ReadWrite);
if (mcfg_region_or_error.is_error())
return false;
auto& mcfg = *(ACPI::Structures::MCFG*)mcfg_region_or_error.value()->vaddr().offset(mcfg_table.offset_in_page()).as_ptr();
dbgln_if(PCI_DEBUG, "PCI: Checking MCFG @ {}, {}", VirtualAddress(&mcfg), mcfg_table);
for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI::Structures::MCFG)) / sizeof(ACPI::Structures::PCI_MMIO_Descriptor)); index++) {
u8 start_bus = mcfg.descriptors[index].start_pci_bus;
u8 end_bus = mcfg.descriptors[index].end_pci_bus;
u32 lower_addr = mcfg.descriptors[index].base_addr;
auto result = m_domains.set(index, { PhysicalAddress(lower_addr), start_bus, end_bus });
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
dmesgln("PCI: New PCI domain @ {}, PCI buses ({}-{})", PhysicalAddress { lower_addr }, start_bus, end_bus);
}
VERIFY(m_domains.contains(0));
dmesgln("PCI: MMIO domain: {}", m_domains.size());
return true;
}
UNMAP_AFTER_INIT bool Access::initialize_for_io_access()
{
if (Access::is_initialized()) {
return false;
}
auto* access = new Access(Access::AccessType::IO);
access->rescan_hardware_with_io_addressing();
dbgln_if(PCI_DEBUG, "PCI: IO access initialised.");
return true;
}
UNMAP_AFTER_INIT Access::Access(AccessType access_type)
: m_enumerated_buses(256, false)
, m_access_type(access_type)
{
if (access_type == AccessType::IO)
dmesgln("PCI: Using I/O instructions for PCI configuration space access");
else
dmesgln("PCI: Using memory access for PCI configuration space accesses");
s_access = this;
}
Optional<PhysicalAddress> Access::determine_memory_mapped_bus_base_address(u32 domain, u8 bus) const
{
auto chosen_domain = m_domains.get(domain);
if (!chosen_domain.has_value())
return {};
if (!(chosen_domain.value().start_bus() <= bus && bus <= chosen_domain.value().end_bus()))
return {};
return chosen_domain.value().paddr().offset(memory_range_per_bus * (bus - chosen_domain.value().start_bus()));
}
void Access::map_bus_region(u32 domain, u8 bus)
{
VERIFY(m_access_lock.is_locked());
if (m_mapped_bus == bus && m_mapped_bus_region)
return;
auto bus_base_address = determine_memory_mapped_bus_base_address(domain, bus);
// FIXME: Find a way to propagate error from here.
if (!bus_base_address.has_value())
VERIFY_NOT_REACHED();
auto region_or_error = MM.allocate_kernel_region(bus_base_address.value(), memory_range_per_bus, "PCI ECAM", Memory::Region::Access::ReadWrite);
// FIXME: Find a way to propagate error from here.
if (region_or_error.is_error())
VERIFY_NOT_REACHED();
m_mapped_bus_region = region_or_error.release_value();
m_mapped_bus = bus;
dbgln_if(PCI_DEBUG, "PCI: New PCI ECAM Mapped region for bus {} @ {} {}", bus, m_mapped_bus_region->vaddr(), m_mapped_bus_region->physical_page(0)->paddr());
}
VirtualAddress Access::get_device_configuration_memory_mapped_space(Address address)
{
VERIFY(m_access_lock.is_locked());
dbgln_if(PCI_DEBUG, "PCI: Getting device configuration space for {}", address);
map_bus_region(address.domain(), address.bus());
return m_mapped_bus_region->vaddr().offset(mmio_device_space_size * address.function() + (mmio_device_space_size * to_underlying(Limits::MaxFunctionsPerDevice)) * address.device());
}
u8 Access::io_read8_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
dbgln_if(PCI_DEBUG, "PCI: IO Reading 8-bit field {:#08x} for {}", field, address);
IO::out32(PCI::address_port, address.io_address_for_field(field));
return IO::in8(PCI::value_port + (field & 3));
}
u16 Access::io_read16_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
dbgln_if(PCI_DEBUG, "PCI: IO Reading 16-bit field {:#08x} for {}", field, address);
IO::out32(PCI::address_port, address.io_address_for_field(field));
return IO::in16(PCI::value_port + (field & 2));
}
u32 Access::io_read32_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
dbgln_if(PCI_DEBUG, "PCI: IO Reading 32-bit field {:#08x} for {}", field, address);
IO::out32(PCI::address_port, address.io_address_for_field(field));
return IO::in32(PCI::value_port);
}
void Access::io_write8_field(Address address, u32 field, u8 value)
{
MutexLocker lock(m_access_lock);
dbgln_if(PCI_DEBUG, "PCI: IO Writing to 8-bit field {:#08x}, value={:#02x} for {}", field, value, address);
IO::out32(PCI::address_port, address.io_address_for_field(field));
IO::out8(PCI::value_port + (field & 3), value);
}
void Access::io_write16_field(Address address, u32 field, u16 value)
{
MutexLocker lock(m_access_lock);
dbgln_if(PCI_DEBUG, "PCI: IO Writing to 16-bit field {:#08x}, value={:#02x} for {}", field, value, address);
IO::out32(PCI::address_port, address.io_address_for_field(field));
IO::out16(PCI::value_port + (field & 2), value);
}
void Access::io_write32_field(Address address, u32 field, u32 value)
{
MutexLocker lock(m_access_lock);
dbgln_if(PCI_DEBUG, "PCI: IO Writing to 32-bit field {:#08x}, value={:#02x} for {}", field, value, address);
IO::out32(PCI::address_port, address.io_address_for_field(field));
IO::out32(PCI::value_port, value);
}
u8 Access::memory_read8_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
VERIFY(field <= 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 8-bit field {:#08x} for {}", field, address);
return *((volatile u8*)(get_device_configuration_memory_mapped_space(address).get() + (field & 0xfff)));
}
u16 Access::memory_read16_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
VERIFY(field < 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 16-bit field {:#08x} for {}", field, address);
u16 data = 0;
ByteReader::load<u16>(get_device_configuration_memory_mapped_space(address).offset(field & 0xfff).as_ptr(), data);
return data;
}
u32 Access::memory_read32_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
VERIFY(field <= 0xffc);
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 32-bit field {:#08x} for {}", field, address);
u32 data = 0;
ByteReader::load<u32>(get_device_configuration_memory_mapped_space(address).offset(field & 0xfff).as_ptr(), data);
return data;
}
void Access::memory_write8_field(Address address, u32 field, u8 value)
{
MutexLocker lock(m_access_lock);
VERIFY(field <= 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 8-bit field {:#08x}, value={:#02x} for {}", field, value, address);
*((volatile u8*)(get_device_configuration_memory_mapped_space(address).get() + (field & 0xfff))) = value;
}
void Access::memory_write16_field(Address address, u32 field, u16 value)
{
MutexLocker lock(m_access_lock);
VERIFY(field < 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 16-bit field {:#08x}, value={:#02x} for {}", field, value, address);
ByteReader::store<u16>(get_device_configuration_memory_mapped_space(address).offset(field & 0xfff).as_ptr(), value);
}
void Access::memory_write32_field(Address address, u32 field, u32 value)
{
MutexLocker lock(m_access_lock);
VERIFY(field <= 0xffc);
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 32-bit field {:#08x}, value={:#02x} for {}", field, value, address);
ByteReader::store<u32>(get_device_configuration_memory_mapped_space(address).offset(field & 0xfff).as_ptr(), value);
}
void Access::write8_field(Address address, u32 field, u8 value)
{
switch (m_access_type) {
case AccessType::IO:
io_write8_field(address, field, value);
return;
case AccessType::Memory:
memory_write8_field(address, field, value);
return;
}
VERIFY_NOT_REACHED();
}
void Access::write16_field(Address address, u32 field, u16 value)
{
switch (m_access_type) {
case AccessType::IO:
io_write16_field(address, field, value);
return;
case AccessType::Memory:
memory_write16_field(address, field, value);
return;
}
VERIFY_NOT_REACHED();
}
void Access::write32_field(Address address, u32 field, u32 value)
{
switch (m_access_type) {
case AccessType::IO:
io_write32_field(address, field, value);
return;
case AccessType::Memory:
memory_write32_field(address, field, value);
return;
}
VERIFY_NOT_REACHED();
}
u8 Access::read8_field(Address address, RegisterOffset field)
{
return read8_field(address, to_underlying(field));
}
u16 Access::read16_field(Address address, RegisterOffset field)
{
return read16_field(address, to_underlying(field));
}
u8 Access::read8_field(Address address, u32 field)
{
switch (m_access_type) {
case AccessType::IO:
return io_read8_field(address, field);
case AccessType::Memory:
return memory_read8_field(address, field);
}
VERIFY_NOT_REACHED();
}
u16 Access::read16_field(Address address, u32 field)
{
switch (m_access_type) {
case AccessType::IO:
return io_read16_field(address, field);
case AccessType::Memory:
return memory_read16_field(address, field);
}
VERIFY_NOT_REACHED();
}
u32 Access::read32_field(Address address, u32 field)
{
switch (m_access_type) {
case AccessType::IO:
return io_read32_field(address, field);
case AccessType::Memory:
return memory_read32_field(address, field);
}
VERIFY_NOT_REACHED();
}
UNMAP_AFTER_INIT void Access::rescan_hardware_with_memory_addressing()
{
MutexLocker locker(m_access_lock);
SpinlockLocker scan_locker(m_scan_lock);
VERIFY(m_device_identifiers.is_empty());
VERIFY(!m_domains.is_empty());
VERIFY(m_access_type == AccessType::Memory);
for (u32 domain = 0; domain < m_domains.size(); domain++) {
dbgln_if(PCI_DEBUG, "PCI: Scan memory mapped domain {}", domain);
// Single PCI host controller.
if ((read8_field(Address(domain), PCI::RegisterOffset::HEADER_TYPE) & 0x80) == 0) {
enumerate_bus(-1, 0, true);
return;
}
// Multiple PCI host controllers.
for (u8 function = 0; function < 8; ++function) {
if (read16_field(Address(domain, 0, 0, function), PCI::RegisterOffset::VENDOR_ID) == PCI::none_value)
break;
enumerate_bus(-1, function, false);
}
}
}
UNMAP_AFTER_INIT void Access::rescan_hardware_with_io_addressing()
{
MutexLocker locker(m_access_lock);
SpinlockLocker scan_locker(m_scan_lock);
VERIFY(m_device_identifiers.is_empty());
VERIFY(m_access_type == AccessType::IO);
dbgln_if(PCI_DEBUG, "PCI: IO enumerating hardware");
// First scan bus 0. Find any device on that bus, and if it's a PCI-to-PCI
// bridge, recursively scan it too.
m_enumerated_buses.set(0, true);
enumerate_bus(-1, 0, true);
// Handle Multiple PCI host bridges on slot 0, device 0.
// If we happen to miss some PCI buses because they are not reachable through
// recursive PCI-to-PCI bridges starting from bus 0, we might find them here.
if ((read8_field(Address(), PCI::RegisterOffset::HEADER_TYPE) & 0x80) != 0) {
for (int bus = 1; bus < 256; ++bus) {
if (read16_field(Address(0, 0, 0, bus), PCI::RegisterOffset::VENDOR_ID) == PCI::none_value)
continue;
if (read16_field(Address(0, 0, 0, bus), PCI::RegisterOffset::CLASS) != 0x6)
continue;
if (m_enumerated_buses.get(bus))
continue;
enumerate_bus(-1, bus, false);
m_enumerated_buses.set(bus, true);
}
}
}
UNMAP_AFTER_INIT void Access::rescan_hardware()
{
switch (m_access_type) {
case AccessType::IO:
rescan_hardware_with_io_addressing();
break;
case AccessType::Memory:
rescan_hardware_with_memory_addressing();
break;
default:
VERIFY_NOT_REACHED();
}
}
UNMAP_AFTER_INIT Optional<u8> Access::get_capabilities_pointer(Address address)
{
dbgln_if(PCI_DEBUG, "PCI: Getting capabilities pointer for {}", address);
if (read16_field(address, PCI::RegisterOffset::STATUS) & (1 << 4)) {
dbgln_if(PCI_DEBUG, "PCI: Found capabilities pointer for {}", address);
return read8_field(address, PCI::RegisterOffset::CAPABILITIES_POINTER);
}
dbgln_if(PCI_DEBUG, "PCI: No capabilities pointer for {}", address);
return {};
}
UNMAP_AFTER_INIT Vector<Capability> Access::get_capabilities(Address address)
{
dbgln_if(PCI_DEBUG, "PCI: Getting capabilities for {}", address);
auto capabilities_pointer = get_capabilities_pointer(address);
if (!capabilities_pointer.has_value()) {
dbgln_if(PCI_DEBUG, "PCI: No capabilities for {}", address);
return {};
}
Vector<Capability> capabilities;
auto capability_pointer = capabilities_pointer.value();
while (capability_pointer != 0) {
dbgln_if(PCI_DEBUG, "PCI: Reading in capability at {:#02x} for {}", capability_pointer, address);
u16 capability_header = read16_field(address, capability_pointer);
u8 capability_id = capability_header & 0xff;
capabilities.append({ address, capability_id, capability_pointer });
capability_pointer = capability_header >> 8;
}
return capabilities;
}
UNMAP_AFTER_INIT void Access::enumerate_functions(int type, u8 bus, u8 device, u8 function, bool recursive)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating function type={}, bus={}, device={}, function={}", type, bus, device, function);
Address address(0, bus, device, function);
auto read_type = (read8_field(address, PCI::RegisterOffset::CLASS) << 8u) | read8_field(address, PCI::RegisterOffset::SUBCLASS);
if (type == -1 || type == read_type) {
HardwareID id = { read16_field(address, PCI::RegisterOffset::VENDOR_ID), read16_field(address, PCI::RegisterOffset::DEVICE_ID) };
ClassCode class_code = read8_field(address, PCI::RegisterOffset::CLASS);
SubclassCode subclass_code = read8_field(address, PCI::RegisterOffset::SUBCLASS);
ProgrammingInterface prog_if = read8_field(address, PCI::RegisterOffset::PROG_IF);
RevisionID revision_id = read8_field(address, PCI::RegisterOffset::REVISION_ID);
SubsystemID subsystem_id = read16_field(address, PCI::RegisterOffset::SUBSYSTEM_ID);
SubsystemVendorID subsystem_vendor_id = read16_field(address, PCI::RegisterOffset::SUBSYSTEM_VENDOR_ID);
InterruptLine interrupt_line = read8_field(address, PCI::RegisterOffset::INTERRUPT_LINE);
InterruptPin interrupt_pin = read8_field(address, PCI::RegisterOffset::INTERRUPT_PIN);
m_device_identifiers.append(DeviceIdentifier { address, id, revision_id, class_code, subclass_code, prog_if, subsystem_id, subsystem_vendor_id, interrupt_line, interrupt_pin, get_capabilities(address) });
}
if (read_type == (to_underlying(PCI::ClassID::Bridge) << 8 | to_underlying(PCI::Bridge::SubclassID::PCI_TO_PCI))
&& recursive
&& (!m_enumerated_buses.get(read8_field(address, PCI::RegisterOffset::SECONDARY_BUS)))) {
u8 secondary_bus = read8_field(address, PCI::RegisterOffset::SECONDARY_BUS);
dbgln_if(PCI_DEBUG, "PCI: Found secondary bus: {}", secondary_bus);
VERIFY(secondary_bus != bus);
m_enumerated_buses.set(secondary_bus, true);
enumerate_bus(type, secondary_bus, recursive);
}
}
UNMAP_AFTER_INIT void Access::enumerate_device(int type, u8 bus, u8 device, bool recursive)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating device type={}, bus={}, device={}", type, bus, device);
Address address(0, bus, device, 0);
if (read16_field(address, PCI::RegisterOffset::VENDOR_ID) == PCI::none_value)
return;
enumerate_functions(type, bus, device, 0, recursive);
if (!(read8_field(address, PCI::RegisterOffset::HEADER_TYPE) & 0x80))
return;
for (u8 function = 1; function < 8; ++function) {
Address address(0, bus, device, function);
if (read16_field(address, PCI::RegisterOffset::VENDOR_ID) != PCI::none_value)
enumerate_functions(type, bus, device, function, recursive);
}
}
UNMAP_AFTER_INIT void Access::enumerate_bus(int type, u8 bus, bool recursive)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating bus type={}, bus={}", type, bus);
for (u8 device = 0; device < 32; ++device)
enumerate_device(type, bus, device, recursive);
}
void Access::fast_enumerate(Function<void(DeviceIdentifier const&)>& callback) const
{
MutexLocker locker(m_access_lock);
VERIFY(!m_device_identifiers.is_empty());
for (auto& device_identifier : m_device_identifiers) {
callback(device_identifier);
}
}
DeviceIdentifier Access::get_device_identifier(Address address) const
{
for (auto device_identifier : m_device_identifiers) {
if (device_identifier.address().domain() == address.domain()
&& device_identifier.address().bus() == address.bus()
&& device_identifier.address().device() == address.device()
&& device_identifier.address().function() == address.function()) {
return device_identifier;
}
}
VERIFY_NOT_REACHED();
}
}
|