1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/StdLibExtras.h>
#include <Kernel/Arch/x86/Processor.h>
#include <Kernel/Arch/x86/TrapFrame.h>
#include <Kernel/Process.h>
#include <Kernel/Random.h>
#include <Kernel/Sections.h>
#include <Kernel/Thread.h>
namespace Kernel {
#define ENTER_THREAD_CONTEXT_ARGS_SIZE (2 * 4) // to_thread, from_thread
NAKED void thread_context_first_enter(void)
{
// clang-format off
// enter_thread_context returns to here first time a thread is executing
asm(
// switch_context will have pushed from_thread and to_thread to our new
// stack prior to thread_context_first_enter() being called, and the
// pointer to TrapFrame was the top of the stack before that
" movl 8(%esp), %ebx \n" // save pointer to TrapFrame
" cld \n"
" call context_first_init \n"
" addl $" __STRINGIFY(ENTER_THREAD_CONTEXT_ARGS_SIZE) ", %esp \n"
" movl %ebx, 0(%esp) \n" // push pointer to TrapFrame
" jmp common_trap_exit \n"
);
// clang-format on
}
NAKED void do_assume_context(Thread*, u32)
{
// clang-format off
// FIXME: I hope (Thread* thread, u32 flags) aren't compiled away
asm(
" movl 4(%esp), %ebx \n"
" movl 8(%esp), %esi \n"
// We're going to call Processor::init_context, so just make sure
// we have enough stack space so we don't stomp over it
" subl $(" __STRINGIFY(4 + REGISTER_STATE_SIZE + TRAP_FRAME_SIZE + 4) "), %esp \n"
" pushl %esi \n"
" pushl %ebx \n"
" cld \n"
" call do_init_context \n"
" addl $8, %esp \n"
" movl %eax, %esp \n" // move stack pointer to what Processor::init_context set up for us
" pushl %ebx \n" // push to_thread
" pushl %ebx \n" // push from_thread
" pushl $thread_context_first_enter \n" // should be same as regs.eip
" jmp enter_thread_context \n"
);
// clang-format on
}
String Processor::platform_string() const
{
return "i386";
}
FlatPtr Processor::init_context(Thread& thread, bool leave_crit)
{
VERIFY(is_kernel_mode());
VERIFY(g_scheduler_lock.is_locked());
if (leave_crit) {
// Leave the critical section we set up in in Process::exec,
// but because we still have the scheduler lock we should end up with 1
m_in_critical--; // leave it without triggering anything or restoring flags
VERIFY(in_critical() == 1);
}
u32 kernel_stack_top = thread.kernel_stack_top();
// Add a random offset between 0-256 (16-byte aligned)
kernel_stack_top -= round_up_to_power_of_two(get_fast_random<u8>(), 16);
u32 stack_top = kernel_stack_top;
// TODO: handle NT?
VERIFY((cpu_flags() & 0x24000) == 0); // Assume !(NT | VM)
auto& regs = thread.regs();
bool return_to_user = (regs.cs & 3) != 0;
// make room for an interrupt frame
if (!return_to_user) {
// userspace_esp and userspace_ss are not popped off by iret
// unless we're switching back to user mode
stack_top -= sizeof(RegisterState) - 2 * sizeof(u32);
// For kernel threads we'll push the thread function argument
// which should be in regs.esp and exit_kernel_thread as return
// address.
stack_top -= 2 * sizeof(u32);
*reinterpret_cast<u32*>(kernel_stack_top - 2 * sizeof(u32)) = regs.esp;
*reinterpret_cast<u32*>(kernel_stack_top - 3 * sizeof(u32)) = FlatPtr(&exit_kernel_thread);
} else {
stack_top -= sizeof(RegisterState);
}
// we want to end up 16-byte aligned, %esp + 4 should be aligned
stack_top -= sizeof(u32);
*reinterpret_cast<u32*>(kernel_stack_top - sizeof(u32)) = 0;
// set up the stack so that after returning from thread_context_first_enter()
// we will end up either in kernel mode or user mode, depending on how the thread is set up
// However, the first step is to always start in kernel mode with thread_context_first_enter
RegisterState& iretframe = *reinterpret_cast<RegisterState*>(stack_top);
iretframe.ss = regs.ss;
iretframe.gs = regs.gs;
iretframe.fs = regs.fs;
iretframe.es = regs.es;
iretframe.ds = regs.ds;
iretframe.edi = regs.edi;
iretframe.esi = regs.esi;
iretframe.ebp = regs.ebp;
iretframe.esp = 0;
iretframe.ebx = regs.ebx;
iretframe.edx = regs.edx;
iretframe.ecx = regs.ecx;
iretframe.eax = regs.eax;
iretframe.eflags = regs.eflags;
iretframe.eip = regs.eip;
iretframe.cs = regs.cs;
if (return_to_user) {
iretframe.userspace_esp = regs.esp;
iretframe.userspace_ss = regs.ss;
}
// make space for a trap frame
stack_top -= sizeof(TrapFrame);
TrapFrame& trap = *reinterpret_cast<TrapFrame*>(stack_top);
trap.regs = &iretframe;
trap.prev_irq_level = 0;
trap.next_trap = nullptr;
stack_top -= sizeof(u32); // pointer to TrapFrame
*reinterpret_cast<u32*>(stack_top) = stack_top + 4;
if constexpr (CONTEXT_SWITCH_DEBUG) {
if (return_to_user) {
dbgln("init_context {} ({}) set up to execute at eip={}:{}, esp={}, stack_top={}, user_top={}:{}",
thread,
VirtualAddress(&thread),
iretframe.cs, regs.eip,
VirtualAddress(regs.esp),
VirtualAddress(stack_top),
iretframe.userspace_ss,
iretframe.userspace_esp);
} else {
dbgln("init_context {} ({}) set up to execute at eip={}:{}, esp={}, stack_top={}",
thread,
VirtualAddress(&thread),
iretframe.cs, regs.eip,
VirtualAddress(regs.esp),
VirtualAddress(stack_top));
}
}
// make switch_context() always first return to thread_context_first_enter()
// in kernel mode, so set up these values so that we end up popping iretframe
// off the stack right after the context switch completed, at which point
// control is transferred to what iretframe is pointing to.
regs.eip = FlatPtr(&thread_context_first_enter);
regs.esp0 = kernel_stack_top;
regs.esp = stack_top;
regs.cs = GDT_SELECTOR_CODE0;
regs.ds = GDT_SELECTOR_DATA0;
regs.es = GDT_SELECTOR_DATA0;
regs.gs = GDT_SELECTOR_DATA0;
regs.ss = GDT_SELECTOR_DATA0;
regs.gs = GDT_SELECTOR_PROC;
return stack_top;
}
void Processor::switch_context(Thread*& from_thread, Thread*& to_thread)
{
VERIFY(!in_irq());
VERIFY(m_in_critical == 1);
VERIFY(is_kernel_mode());
dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context --> switching out of: {} {}", VirtualAddress(from_thread), *from_thread);
from_thread->save_critical(m_in_critical);
// clang-format off
// Switch to new thread context, passing from_thread and to_thread
// through to the new context using registers edx and eax
asm volatile(
// NOTE: changing how much we push to the stack affects thread_context_first_enter()!
"pushfl \n"
"pushl %%ebx \n"
"pushl %%esi \n"
"pushl %%edi \n"
"pushl %%ebp \n"
"movl %%esp, %[from_esp] \n"
"movl $1f, %[from_eip] \n"
"movl %[to_esp0], %%ebx \n"
"movl %%ebx, %[tss_esp0] \n"
"movl %[to_esp], %%esp \n"
"pushl %[to_thread] \n"
"pushl %[from_thread] \n"
"pushl %[to_eip] \n"
"cld \n"
"jmp enter_thread_context \n"
"1: \n"
"popl %%edx \n"
"popl %%eax \n"
"popl %%ebp \n"
"popl %%edi \n"
"popl %%esi \n"
"popl %%ebx \n"
"popfl \n"
: [from_esp] "=m" (from_thread->regs().esp),
[from_eip] "=m" (from_thread->regs().eip),
[tss_esp0] "=m" (m_tss.esp0),
"=d" (from_thread), // needed so that from_thread retains the correct value
"=a" (to_thread) // needed so that to_thread retains the correct value
: [to_esp] "g" (to_thread->regs().esp),
[to_esp0] "g" (to_thread->regs().esp0),
[to_eip] "c" (to_thread->regs().eip),
[from_thread] "d" (from_thread),
[to_thread] "a" (to_thread)
: "memory"
);
// clang-format on
dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context <-- from {} {} to {} {}", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread);
Processor::current().restore_in_critical(to_thread->saved_critical());
}
UNMAP_AFTER_INIT void Processor::initialize_context_switching(Thread& initial_thread)
{
VERIFY(initial_thread.process().is_kernel_process());
auto& regs = initial_thread.regs();
m_tss.iomapbase = sizeof(m_tss);
m_tss.esp0 = regs.esp0;
m_tss.ss0 = GDT_SELECTOR_DATA0;
m_scheduler_initialized = true;
// clang-format off
asm volatile(
"movl %[new_esp], %%esp \n" // switch to new stack
"pushl %[from_to_thread] \n" // to_thread
"pushl %[from_to_thread] \n" // from_thread
"pushl $" __STRINGIFY(GDT_SELECTOR_CODE0) " \n"
"pushl %[new_eip] \n" // save the entry eip to the stack
"movl %%esp, %%ebx \n"
"addl $20, %%ebx \n" // calculate pointer to TrapFrame
"pushl %%ebx \n"
"cld \n"
"pushl %[cpu] \n" // push argument for init_finished before register is clobbered
"call pre_init_finished \n"
"call init_finished \n"
"addl $4, %%esp \n"
"call post_init_finished \n"
"call enter_trap_no_irq \n"
"addl $4, %%esp \n"
"lret \n"
:: [new_esp] "g" (regs.esp),
[new_eip] "a" (regs.eip),
[from_to_thread] "b" (&initial_thread),
[cpu] "c" (id())
);
// clang-format on
VERIFY_NOT_REACHED();
}
}
|