1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
|
/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Array.h>
#include <AK/Concepts.h>
#include <AK/Function.h>
#include <AK/Types.h>
#include <Kernel/Arch/x86/ASM_wrapper.h>
#include <Kernel/Arch/x86/CPUID.h>
#include <Kernel/Arch/x86/DescriptorTable.h>
#include <Kernel/Arch/x86/PageDirectory.h>
#include <Kernel/Arch/x86/TSS.h>
namespace Kernel {
class Thread;
class SchedulerPerProcessorData;
struct MemoryManagerData;
struct ProcessorMessageEntry;
class TrapFrame;
class ProcessorInfo;
struct [[gnu::aligned(16)]] FPUState
{
u8 buffer[512];
};
struct ProcessorMessage {
using CallbackFunction = Function<void()>;
enum Type {
FlushTlb,
Callback,
};
Type type;
Atomic<u32> refs;
union {
ProcessorMessage* next; // only valid while in the pool
alignas(CallbackFunction) u8 callback_storage[sizeof(CallbackFunction)];
struct {
const PageDirectory* page_directory;
u8* ptr;
size_t page_count;
} flush_tlb;
};
volatile bool async;
ProcessorMessageEntry* per_proc_entries;
CallbackFunction& callback_value()
{
return *bit_cast<CallbackFunction*>(&callback_storage);
}
void invoke_callback()
{
VERIFY(type == Type::Callback);
callback_value()();
}
};
struct ProcessorMessageEntry {
ProcessorMessageEntry* next;
ProcessorMessage* msg;
};
struct DeferredCallEntry {
using HandlerFunction = Function<void()>;
DeferredCallEntry* next;
alignas(HandlerFunction) u8 handler_storage[sizeof(HandlerFunction)];
bool was_allocated;
HandlerFunction& handler_value()
{
return *bit_cast<HandlerFunction*>(&handler_storage);
}
void invoke_handler()
{
handler_value()();
}
};
class Processor;
// Note: We only support processors at most at the moment,
// so allocate 8 slots of inline capacity in the container.
using ProcessorContainer = Array<Processor*, 8>;
class Processor {
friend class ProcessorInfo;
AK_MAKE_NONCOPYABLE(Processor);
AK_MAKE_NONMOVABLE(Processor);
Processor* m_self;
DescriptorTablePointer m_gdtr;
Descriptor m_gdt[256];
u32 m_gdt_length;
u32 m_cpu;
u32 m_in_irq;
Atomic<u32, AK::MemoryOrder::memory_order_relaxed> m_in_critical;
static Atomic<u32> s_idle_cpu_mask;
TSS m_tss;
static FPUState s_clean_fpu_state;
CPUFeature m_features;
static Atomic<u32> g_total_processors;
u8 m_physical_address_bit_width;
ProcessorInfo* m_info;
MemoryManagerData* m_mm_data;
SchedulerPerProcessorData* m_scheduler_data;
Thread* m_current_thread;
Thread* m_idle_thread;
Atomic<ProcessorMessageEntry*> m_message_queue;
bool m_invoke_scheduler_async;
bool m_scheduler_initialized;
Atomic<bool> m_halt_requested;
DeferredCallEntry* m_pending_deferred_calls; // in reverse order
DeferredCallEntry* m_free_deferred_call_pool_entry;
DeferredCallEntry m_deferred_call_pool[5];
void gdt_init();
void write_raw_gdt_entry(u16 selector, u32 low, u32 high);
void write_gdt_entry(u16 selector, Descriptor& descriptor);
static ProcessorContainer& processors();
static void smp_return_to_pool(ProcessorMessage& msg);
static ProcessorMessage& smp_get_from_pool();
static void smp_cleanup_message(ProcessorMessage& msg);
bool smp_queue_message(ProcessorMessage& msg);
static void smp_unicast_message(u32 cpu, ProcessorMessage& msg, bool async);
static void smp_broadcast_message(ProcessorMessage& msg);
static void smp_broadcast_wait_sync(ProcessorMessage& msg);
static void smp_broadcast_halt();
void deferred_call_pool_init();
void deferred_call_execute_pending();
DeferredCallEntry* deferred_call_get_free();
void deferred_call_return_to_pool(DeferredCallEntry*);
void deferred_call_queue_entry(DeferredCallEntry*);
void cpu_detect();
void cpu_setup();
String features_string() const;
public:
Processor() = default;
void early_initialize(u32 cpu);
void initialize(u32 cpu);
void idle_begin()
{
s_idle_cpu_mask.fetch_or(1u << m_cpu, AK::MemoryOrder::memory_order_relaxed);
}
void idle_end()
{
s_idle_cpu_mask.fetch_and(~(1u << m_cpu), AK::MemoryOrder::memory_order_relaxed);
}
static u32 count()
{
// NOTE: because this value never changes once all APs are booted,
// we can safely bypass loading it atomically.
return *g_total_processors.ptr();
}
ALWAYS_INLINE static void wait_check()
{
Processor::current().smp_process_pending_messages();
// TODO: pause
}
[[noreturn]] static void halt();
static void flush_entire_tlb_local()
{
write_cr3(read_cr3());
}
static void flush_tlb_local(VirtualAddress vaddr, size_t page_count);
static void flush_tlb(const PageDirectory*, VirtualAddress, size_t);
Descriptor& get_gdt_entry(u16 selector);
void flush_gdt();
const DescriptorTablePointer& get_gdtr();
static Processor& by_id(u32 cpu);
static size_t processor_count() { return processors().size(); }
template<IteratorFunction<Processor&> Callback>
static inline IterationDecision for_each(Callback callback)
{
auto& procs = processors();
size_t count = procs.size();
for (size_t i = 0; i < count; i++) {
if (callback(*procs[i]) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<VoidFunction<Processor&> Callback>
static inline IterationDecision for_each(Callback callback)
{
auto& procs = processors();
size_t count = procs.size();
for (size_t i = 0; i < count; i++) {
if (procs[i] != nullptr)
callback(*procs[i]);
}
return IterationDecision::Continue;
}
ALWAYS_INLINE u8 physical_address_bit_width() const { return m_physical_address_bit_width; }
ALWAYS_INLINE ProcessorInfo& info() { return *m_info; }
ALWAYS_INLINE static Processor& current()
{
return *(Processor*)read_fs_ptr(__builtin_offsetof(Processor, m_self));
}
ALWAYS_INLINE static bool is_initialized()
{
return get_fs() == GDT_SELECTOR_PROC && read_fs_u32(__builtin_offsetof(Processor, m_self)) != 0;
}
ALWAYS_INLINE void set_scheduler_data(SchedulerPerProcessorData& scheduler_data)
{
m_scheduler_data = &scheduler_data;
}
ALWAYS_INLINE SchedulerPerProcessorData& get_scheduler_data() const
{
return *m_scheduler_data;
}
ALWAYS_INLINE void set_mm_data(MemoryManagerData& mm_data)
{
m_mm_data = &mm_data;
}
ALWAYS_INLINE MemoryManagerData& get_mm_data() const
{
return *m_mm_data;
}
ALWAYS_INLINE void set_idle_thread(Thread& idle_thread)
{
m_idle_thread = &idle_thread;
}
ALWAYS_INLINE static Thread* current_thread()
{
// If we were to use Processor::current here, we'd have to
// disable interrupts to prevent a race where we may get pre-empted
// right after getting the Processor structure and then get moved
// to another processor, which would lead us to get the wrong thread.
// To avoid having to disable interrupts, we can just read the field
// directly in an atomic fashion, similar to Processor::current.
return (Thread*)read_fs_ptr(__builtin_offsetof(Processor, m_current_thread));
}
ALWAYS_INLINE static void set_current_thread(Thread& current_thread)
{
// See comment in Processor::current_thread
write_fs_u32(__builtin_offsetof(Processor, m_current_thread), FlatPtr(¤t_thread));
}
ALWAYS_INLINE static Thread* idle_thread()
{
// See comment in Processor::current_thread
return (Thread*)read_fs_ptr(__builtin_offsetof(Processor, m_idle_thread));
}
ALWAYS_INLINE u32 get_id() const
{
// NOTE: This variant should only be used when iterating over all
// Processor instances, or when it's guaranteed that the thread
// cannot move to another processor in between calling Processor::current
// and Processor::get_id, or if this fact is not important.
// All other cases should use Processor::id instead!
return m_cpu;
}
ALWAYS_INLINE static u32 id()
{
// See comment in Processor::current_thread
return read_fs_ptr(__builtin_offsetof(Processor, m_cpu));
}
ALWAYS_INLINE static bool is_bootstrap_processor()
{
return Processor::id() == 0;
}
ALWAYS_INLINE u32 raise_irq()
{
return m_in_irq++;
}
ALWAYS_INLINE void restore_irq(u32 prev_irq)
{
VERIFY(prev_irq <= m_in_irq);
if (!prev_irq) {
u32 prev_critical = 0;
if (m_in_critical.compare_exchange_strong(prev_critical, 1)) {
m_in_irq = prev_irq;
deferred_call_execute_pending();
auto prev_raised = m_in_critical.exchange(prev_critical);
VERIFY(prev_raised == prev_critical + 1);
check_invoke_scheduler();
} else if (prev_critical == 0) {
check_invoke_scheduler();
}
} else {
m_in_irq = prev_irq;
}
}
ALWAYS_INLINE u32& in_irq()
{
return m_in_irq;
}
ALWAYS_INLINE void restore_in_critical(u32 critical)
{
m_in_critical = critical;
}
ALWAYS_INLINE void enter_critical(u32& prev_flags)
{
prev_flags = cpu_flags();
cli();
m_in_critical++;
}
ALWAYS_INLINE void leave_critical(u32 prev_flags)
{
cli(); // Need to prevent IRQs from interrupting us here!
VERIFY(m_in_critical > 0);
if (m_in_critical == 1) {
if (!m_in_irq) {
deferred_call_execute_pending();
VERIFY(m_in_critical == 1);
}
m_in_critical--;
if (!m_in_irq)
check_invoke_scheduler();
} else {
m_in_critical--;
}
if (prev_flags & 0x200)
sti();
else
cli();
}
ALWAYS_INLINE u32 clear_critical(u32& prev_flags, bool enable_interrupts)
{
prev_flags = cpu_flags();
u32 prev_crit = m_in_critical.exchange(0, AK::MemoryOrder::memory_order_acquire);
if (!m_in_irq)
check_invoke_scheduler();
if (enable_interrupts)
sti();
return prev_crit;
}
ALWAYS_INLINE void restore_critical(u32 prev_crit, u32 prev_flags)
{
m_in_critical.store(prev_crit, AK::MemoryOrder::memory_order_release);
VERIFY(!prev_crit || !(prev_flags & 0x200));
if (prev_flags & 0x200)
sti();
else
cli();
}
ALWAYS_INLINE u32 in_critical() { return m_in_critical.load(); }
ALWAYS_INLINE const FPUState& clean_fpu_state() const
{
return s_clean_fpu_state;
}
static void smp_enable();
bool smp_process_pending_messages();
static void smp_broadcast(Function<void()>, bool async);
static void smp_unicast(u32 cpu, Function<void()>, bool async);
static void smp_broadcast_flush_tlb(const PageDirectory*, VirtualAddress, size_t);
static u32 smp_wake_n_idle_processors(u32 wake_count);
static void deferred_call_queue(Function<void()> callback);
ALWAYS_INLINE bool has_feature(CPUFeature f) const
{
return (static_cast<u32>(m_features) & static_cast<u32>(f)) != 0;
}
void check_invoke_scheduler();
void invoke_scheduler_async() { m_invoke_scheduler_async = true; }
void enter_trap(TrapFrame& trap, bool raise_irq);
void exit_trap(TrapFrame& trap);
[[noreturn]] void initialize_context_switching(Thread& initial_thread);
NEVER_INLINE void switch_context(Thread*& from_thread, Thread*& to_thread);
[[noreturn]] static void assume_context(Thread& thread, FlatPtr flags);
u32 init_context(Thread& thread, bool leave_crit);
static Vector<FlatPtr> capture_stack_trace(Thread& thread, size_t max_frames = 0);
String platform_string() const;
};
}
|