1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
/*
* Copyright (c) 2023, Daniel Bertalan <dani@danielbertalan.dev>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/aarch64/RPi/GPIO.h>
#include <Kernel/Arch/aarch64/RPi/MMIO.h>
#include <Kernel/Arch/aarch64/RPi/MiniUART.h>
#include <Kernel/Arch/aarch64/RPi/Timer.h>
namespace Kernel::RPi {
// bcm2711-peripherals.pdf "Table 2. Auxiliary peripherals Address Map"
struct MiniUARTRegisters {
u32 io_data;
u32 interrupt_enable;
u32 interrupt_identify;
u32 line_control;
u32 modem_control;
u32 line_status;
u32 modem_status;
u32 extra_control;
u32 extra_status;
u32 baud_rate;
};
// "Table 4. AUX_ENABLES Register"
enum AuxControlBits {
MiniUARTEnable = 1,
SPI1Enable = 1 << 1,
SPI2Enable = 1 << 2,
};
// "Table 8. AUX_MU_LCR_REG Register"
enum LineControl {
DataSize8Bits = 1,
Break = 1 << 6,
DLABAccess = 1 << 7,
};
// "Table 13. AUX_MU_CNTL_REG Register"
enum ExtraControl {
ReceiverEnable = 1,
TransmitterEnable = 2,
};
// "Table 10. AUX_MU_LSR_REG Register"
enum LineStatus {
DataReady = 0,
ReceiverOverrun = 1,
TransmitterEmpty = 1 << 5,
TransmitterIdle = 1 << 6,
};
constexpr FlatPtr AUX_ENABLES = 0x21'5000;
UNMAP_AFTER_INIT ErrorOr<NonnullLockRefPtr<MiniUART>> MiniUART::create()
{
return DeviceManagement::try_create_device<MiniUART>();
}
UNMAP_AFTER_INIT MiniUART::MiniUART()
: CharacterDevice(4, 64)
, m_registers(MMIO::the().peripheral<MiniUARTRegisters>(0x21'5040))
{
auto& gpio = GPIO::the();
gpio.set_pin_function(40, GPIO::PinFunction::Alternate5); // TXD1
gpio.set_pin_function(41, GPIO::PinFunction::Alternate5); // RXD1
gpio.set_pin_pull_up_down_state(Array { 40, 41 }, GPIO::PullUpDownState::Disable);
// The mini UART peripheral needs to be enabled before we can configure it.
MMIO::the().write(AUX_ENABLES, MMIO::the().read(AUX_ENABLES) | MiniUARTEnable);
set_baud_rate(115'200);
m_registers->line_control = DataSize8Bits;
m_registers->extra_control = ReceiverEnable | TransmitterEnable;
}
UNMAP_AFTER_INIT MiniUART::~MiniUART() = default;
bool MiniUART::can_read(OpenFileDescription const&, u64) const
{
return false;
}
ErrorOr<size_t> MiniUART::read(OpenFileDescription&, u64, UserOrKernelBuffer&, size_t)
{
// FIXME: Implement reading from the MiniUART.
return ENOTIMPL;
}
bool MiniUART::can_write(OpenFileDescription const&, u64) const
{
return (m_registers->line_status & TransmitterEmpty) != 0;
}
ErrorOr<size_t> MiniUART::write(Kernel::OpenFileDescription& description, u64, Kernel::UserOrKernelBuffer const& buffer, size_t size)
{
if (!size)
return 0;
SpinlockLocker lock(m_serial_lock);
if (!can_write(description, size))
return EAGAIN;
return buffer.read_buffered<128>(size, [&](ReadonlyBytes bytes) {
for (const auto& byte : bytes)
put_char(byte);
return bytes.size();
});
}
void MiniUART::put_char(u8 ch)
{
while ((m_registers->line_status & TransmitterEmpty) == 0)
;
if (ch == '\n' && !m_last_put_char_was_carriage_return)
m_registers->io_data = '\r';
m_registers->io_data = ch;
m_last_put_char_was_carriage_return = (ch == '\r');
}
// The mini UAT's clock is generated from the system (VideoCore) clock.
// See section "2.2.1. Mini UART implementation details"
void MiniUART::set_baud_rate(u32 baud_rate)
{
auto system_clock = Timer::get_clock_rate(Timer::ClockID::V3D);
m_registers->baud_rate = system_clock / (8 * baud_rate) - 1;
}
}
|