summaryrefslogtreecommitdiff
path: root/AK/Vector.h
blob: 8ea80428524770cad8be61ff89b59037b9292be9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#pragma once

#include <AK/Assertions.h>
#include <AK/Find.h>
#include <AK/Forward.h>
#include <AK/Iterator.h>
#include <AK/Optional.h>
#include <AK/Span.h>
#include <AK/StdLibExtras.h>
#include <AK/Traits.h>
#include <AK/TypedTransfer.h>
#include <AK/kmalloc.h>

// NOTE: We can't include <initializer_list> during the toolchain bootstrap,
//       since it's part of libstdc++, and libstdc++ depends on LibC.
//       For this reason, we don't support Vector(initializer_list) in LibC.
#ifndef SERENITY_LIBC_BUILD
#    include <initializer_list>
#endif

#ifndef __serenity__
#    include <new>
#endif

namespace AK {

template<typename T, size_t inline_capacity>
class Vector {
public:
    using value_type = T;

    Vector()
        : m_capacity(inline_capacity)
    {
    }

    ~Vector()
    {
        clear();
    }

#ifndef SERENITY_LIBC_BUILD
    Vector(std::initializer_list<T> list)
    {
        ensure_capacity(list.size());
        for (auto& item : list)
            unchecked_append(item);
    }
#endif

    Vector(Vector&& other)
        : m_size(other.m_size)
        , m_capacity(other.m_capacity)
        , m_outline_buffer(other.m_outline_buffer)
    {
        if constexpr (inline_capacity > 0) {
            if (!m_outline_buffer) {
                for (size_t i = 0; i < m_size; ++i) {
                    new (&inline_buffer()[i]) T(move(other.inline_buffer()[i]));
                    other.inline_buffer()[i].~T();
                }
            }
        }
        other.m_outline_buffer = nullptr;
        other.m_size = 0;
        other.reset_capacity();
    }

    Vector(const Vector& other)
    {
        ensure_capacity(other.size());
        TypedTransfer<T>::copy(data(), other.data(), other.size());
        m_size = other.size();
    }

    template<size_t other_inline_capacity>
    Vector(const Vector<T, other_inline_capacity>& other)
    {
        ensure_capacity(other.size());
        TypedTransfer<T>::copy(data(), other.data(), other.size());
        m_size = other.size();
    }

    Span<T> span() { return { data(), size() }; }
    Span<const T> span() const { return { data(), size() }; }

    // FIXME: What about assigning from a vector with lower inline capacity?
    Vector& operator=(Vector&& other)
    {
        if (this != &other) {
            clear();
            m_size = other.m_size;
            m_capacity = other.m_capacity;
            m_outline_buffer = other.m_outline_buffer;
            if constexpr (inline_capacity > 0) {
                if (!m_outline_buffer) {
                    for (size_t i = 0; i < m_size; ++i) {
                        new (&inline_buffer()[i]) T(move(other.inline_buffer()[i]));
                        other.inline_buffer()[i].~T();
                    }
                }
            }
            other.m_outline_buffer = nullptr;
            other.m_size = 0;
            other.reset_capacity();
        }
        return *this;
    }

    void clear()
    {
        clear_with_capacity();
        if (m_outline_buffer) {
            kfree(m_outline_buffer);
            m_outline_buffer = nullptr;
        }
        reset_capacity();
    }

    void clear_with_capacity()
    {
        for (size_t i = 0; i < m_size; ++i)
            data()[i].~T();
        m_size = 0;
    }

    template<typename V>
    bool operator==(const V& other) const
    {
        if (m_size != other.size())
            return false;
        return TypedTransfer<T>::compare(data(), other.data(), size());
    }

    operator Span<T>() { return span(); }
    operator Span<const T>() const { return span(); }

    bool contains_slow(const T& value) const
    {
        for (size_t i = 0; i < size(); ++i) {
            if (Traits<T>::equals(at(i), value))
                return true;
        }
        return false;
    }

    // NOTE: Vector::is_null() exists for the benefit of String::copy().
    bool is_null() const { return false; }
    bool is_empty() const { return size() == 0; }
    ALWAYS_INLINE size_t size() const { return m_size; }
    size_t capacity() const { return m_capacity; }

    T* data()
    {
        if constexpr (inline_capacity > 0)
            return m_outline_buffer ? m_outline_buffer : inline_buffer();
        return m_outline_buffer;
    }
    const T* data() const
    {
        if constexpr (inline_capacity > 0)
            return m_outline_buffer ? m_outline_buffer : inline_buffer();
        return m_outline_buffer;
    }

    ALWAYS_INLINE const T& at(size_t i) const
    {
        ASSERT(i < m_size);
        return data()[i];
    }
    ALWAYS_INLINE T& at(size_t i)
    {
        ASSERT(i < m_size);
        return data()[i];
    }

    ALWAYS_INLINE const T& operator[](size_t i) const { return at(i); }
    ALWAYS_INLINE T& operator[](size_t i) { return at(i); }

    const T& first() const { return at(0); }
    T& first() { return at(0); }

    const T& last() const { return at(size() - 1); }
    T& last() { return at(size() - 1); }

    T take_last()
    {
        ASSERT(!is_empty());
        T value = move(last());
        last().~T();
        --m_size;
        return value;
    }

    T take_first()
    {
        ASSERT(!is_empty());
        T value = move(first());
        remove(0);
        return value;
    }

    T take(size_t index)
    {
        T value = move(at(index));
        remove(index);
        return value;
    }

    T unstable_take(size_t index)
    {
        ASSERT(index < m_size);
        swap(at(index), at(m_size - 1));
        return take_last();
    }

    void remove(size_t index)
    {
        ASSERT(index < m_size);

        if constexpr (Traits<T>::is_trivial()) {
            TypedTransfer<T>::copy(slot(index), slot(index + 1), m_size - index - 1);
        } else {
            at(index).~T();
            for (size_t i = index + 1; i < m_size; ++i) {
                new (slot(i - 1)) T(move(at(i)));
                at(i).~T();
            }
        }

        --m_size;
    }

    void insert(size_t index, T&& value)
    {
        ASSERT(index <= size());
        if (index == size())
            return append(move(value));
        grow_capacity(size() + 1);
        ++m_size;
        if constexpr (Traits<T>::is_trivial()) {
            TypedTransfer<T>::move(slot(index + 1), slot(index), m_size - index - 1);
        } else {
            for (size_t i = size() - 1; i > index; --i) {
                new (slot(i)) T(move(at(i - 1)));
                at(i - 1).~T();
            }
        }
        new (slot(index)) T(move(value));
    }

    void insert(size_t index, const T& value)
    {
        insert(index, T(value));
    }

    template<typename C>
    void insert_before_matching(T&& value, C callback, size_t first_index = 0, size_t* inserted_index = nullptr)
    {
        for (size_t i = first_index; i < size(); ++i) {
            if (callback(at(i))) {
                insert(i, move(value));
                if (inserted_index)
                    *inserted_index = i;
                return;
            }
        }
        append(move(value));
        if (inserted_index)
            *inserted_index = size() - 1;
    }

    Vector& operator=(const Vector& other)
    {
        if (this != &other) {
            clear();
            ensure_capacity(other.size());
            TypedTransfer<T>::copy(data(), other.data(), other.size());
            m_size = other.size();
        }
        return *this;
    }

    template<size_t other_inline_capacity>
    Vector& operator=(const Vector<T, other_inline_capacity>& other)
    {
        clear();
        ensure_capacity(other.size());
        TypedTransfer<T>::copy(data(), other.data(), other.size());
        m_size = other.size();
        return *this;
    }

    void append(Vector&& other)
    {
        if (is_empty()) {
            *this = move(other);
            return;
        }
        auto other_size = other.size();
        Vector tmp = move(other);
        grow_capacity(size() + other_size);
        TypedTransfer<T>::move(data() + m_size, tmp.data(), other_size);
        m_size += other_size;
    }

    void append(const Vector& other)
    {
        grow_capacity(size() + other.size());
        TypedTransfer<T>::copy(data() + m_size, other.data(), other.size());
        m_size += other.m_size;
    }

    template<typename Callback>
    Optional<T> first_matching(Callback callback)
    {
        for (size_t i = 0; i < size(); ++i) {
            if (callback(at(i))) {
                return at(i);
            }
        }
        return {};
    }

    template<typename Callback>
    Optional<T> last_matching(Callback callback)
    {
        for (ssize_t i = size() - 1; i >= 0; --i) {
            if (callback(at(i))) {
                return at(i);
            }
        }
        return {};
    }

    template<typename Callback>
    bool remove_first_matching(Callback callback)
    {
        for (size_t i = 0; i < size(); ++i) {
            if (callback(at(i))) {
                remove(i);
                return true;
            }
        }
        return false;
    }

    template<typename Callback>
    void remove_all_matching(Callback callback)
    {
        for (size_t i = 0; i < size();) {
            if (callback(at(i))) {
                remove(i);
            } else {
                ++i;
            }
        }
    }

    ALWAYS_INLINE void unchecked_append(T&& value)
    {
        ASSERT((size() + 1) <= capacity());
        new (slot(m_size)) T(move(value));
        ++m_size;
    }

    ALWAYS_INLINE void unchecked_append(const T& value)
    {
        unchecked_append(T(value));
    }

    template<class... Args>
    void empend(Args&&... args)
    {
        grow_capacity(m_size + 1);
        new (slot(m_size)) T { forward<Args>(args)... };
        ++m_size;
    }

    ALWAYS_INLINE void append(T&& value)
    {
        grow_capacity(size() + 1);
        new (slot(m_size)) T(move(value));
        ++m_size;
    }

    ALWAYS_INLINE void append(const T& value)
    {
        append(T(value));
    }

    void prepend(T&& value)
    {
        insert(0, move(value));
    }

    void prepend(const T& value)
    {
        insert(0, value);
    }

    void prepend(Vector&& other)
    {
        if (other.is_empty())
            return;

        if (is_empty()) {
            *this = move(other);
            return;
        }

        auto other_size = other.size();
        grow_capacity(size() + other_size);

        for (size_t i = size() + other_size - 1; i >= other.size(); --i) {
            new (slot(i)) T(move(at(i - other_size)));
            at(i - other_size).~T();
        }

        Vector tmp = move(other);
        TypedTransfer<T>::move(slot(0), tmp.data(), tmp.size());
        m_size += other_size;
    }

    void prepend(const T* values, size_t count)
    {
        if (!count)
            return;
        grow_capacity(size() + count);
        TypedTransfer<T>::move(slot(count), slot(0), m_size);
        TypedTransfer<T>::copy(slot(0), values, count);
        m_size += count;
    }

    void append(const T* values, size_t count)
    {
        if (!count)
            return;
        grow_capacity(size() + count);
        TypedTransfer<T>::copy(slot(m_size), values, count);
        m_size += count;
    }

    void grow_capacity(size_t needed_capacity)
    {
        if (m_capacity >= needed_capacity)
            return;
        ensure_capacity(padded_capacity(needed_capacity));
    }

    void ensure_capacity(size_t needed_capacity)
    {
        if (m_capacity >= needed_capacity)
            return;
        size_t new_capacity = needed_capacity;
        auto* new_buffer = (T*)kmalloc(new_capacity * sizeof(T));

        if constexpr (Traits<T>::is_trivial()) {
            TypedTransfer<T>::copy(new_buffer, data(), m_size);
        } else {
            for (size_t i = 0; i < m_size; ++i) {
                new (&new_buffer[i]) T(move(at(i)));
                at(i).~T();
            }
        }
        if (m_outline_buffer)
            kfree(m_outline_buffer);
        m_outline_buffer = new_buffer;
        m_capacity = new_capacity;
    }

    void shrink(size_t new_size, bool keep_capacity = false)
    {
        ASSERT(new_size <= size());
        if (new_size == size())
            return;

        if (!new_size) {
            if (keep_capacity)
                clear_with_capacity();
            else
                clear();
            return;
        }

        for (size_t i = new_size; i < size(); ++i)
            at(i).~T();
        m_size = new_size;
    }

    void resize(size_t new_size, bool keep_capacity = false)
    {
        if (new_size <= size())
            return shrink(new_size, keep_capacity);

        ensure_capacity(new_size);
        for (size_t i = size(); i < new_size; ++i)
            new (slot(i)) T;
        m_size = new_size;
    }

    void resize_and_keep_capacity(size_t new_size)
    {
        return resize(new_size, true);
    }

    using ConstIterator = SimpleIterator<const Vector, const T>;
    using Iterator = SimpleIterator<Vector, T>;

    ConstIterator begin() const { return ConstIterator::begin(*this); }
    Iterator begin() { return Iterator::begin(*this); }

    ConstIterator end() const { return ConstIterator::end(*this); }
    Iterator end() { return Iterator::end(*this); }

    template<typename TUnaryPredicate>
    ConstIterator find_if(TUnaryPredicate&& finder) const
    {
        return AK::find_if(begin(), end(), forward<TUnaryPredicate>(finder));
    }

    template<typename TUnaryPredicate>
    Iterator find_if(TUnaryPredicate&& finder)
    {
        return AK::find_if(begin(), end(), forward<TUnaryPredicate>(finder));
    }

    ConstIterator find(const T& value) const
    {
        return AK::find(begin(), end(), value);
    }

    Iterator find(const T& value)
    {
        return AK::find(begin(), end(), value);
    }

    Optional<size_t> find_first_index(const T& value)
    {
        if (const auto index = AK::find_index(begin(), end(), value);
            index < size()) {
            return index;
        }
        return {};
    }

private:
    void reset_capacity()
    {
        m_capacity = inline_capacity;
    }

    static size_t padded_capacity(size_t capacity)
    {
        return max(static_cast<size_t>(4), capacity + (capacity / 4) + 4);
    }

    T* slot(size_t i) { return &data()[i]; }
    const T* slot(size_t i) const { return &data()[i]; }

    T* inline_buffer()
    {
        static_assert(inline_capacity > 0);
        return reinterpret_cast<T*>(m_inline_buffer_storage);
    }
    const T* inline_buffer() const
    {
        static_assert(inline_capacity > 0);
        return reinterpret_cast<const T*>(m_inline_buffer_storage);
    }

    size_t m_size { 0 };
    size_t m_capacity { 0 };

    alignas(T) unsigned char m_inline_buffer_storage[sizeof(T) * inline_capacity];
    T* m_outline_buffer { nullptr };
};

}

using AK::Vector;