1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
|
/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Array.h>
#include <AK/BitCast.h>
#include <AK/StdLibExtras.h>
#include <AK/TypeList.h>
namespace AK::Detail {
template<typename T, typename IndexType, IndexType InitialIndex, typename... InTypes>
struct VariantIndexOf {
static_assert(DependentFalse<T, IndexType, InTypes...>, "Invalid VariantIndex instantiated");
};
template<typename T, typename IndexType, IndexType InitialIndex, typename InType, typename... RestOfInTypes>
struct VariantIndexOf<T, IndexType, InitialIndex, InType, RestOfInTypes...> {
consteval IndexType operator()()
{
if constexpr (IsSame<T, InType>)
return InitialIndex;
else
return VariantIndexOf<T, IndexType, InitialIndex + 1, RestOfInTypes...> {}();
}
};
template<typename T, typename IndexType, IndexType InitialIndex>
struct VariantIndexOf<T, IndexType, InitialIndex> {
consteval IndexType operator()() { return InitialIndex; }
};
template<typename T, typename IndexType, typename... Ts>
consteval IndexType index_of()
{
return VariantIndexOf<T, IndexType, 0, Ts...> {}();
}
template<typename IndexType, IndexType InitialIndex, typename... Ts>
struct Variant;
template<typename IndexType, IndexType InitialIndex, typename F, typename... Ts>
struct Variant<IndexType, InitialIndex, F, Ts...> {
static constexpr auto current_index = VariantIndexOf<F, IndexType, InitialIndex, F, Ts...> {}();
ALWAYS_INLINE static void delete_(IndexType id, void* data)
{
if (id == current_index)
bit_cast<F*>(data)->~F();
else
Variant<IndexType, InitialIndex + 1, Ts...>::delete_(id, data);
}
ALWAYS_INLINE static void move_(IndexType old_id, void* old_data, void* new_data)
{
if (old_id == current_index)
new (new_data) F(move(*bit_cast<F*>(old_data)));
else
Variant<IndexType, InitialIndex + 1, Ts...>::move_(old_id, old_data, new_data);
}
ALWAYS_INLINE static void copy_(IndexType old_id, const void* old_data, void* new_data)
{
if (old_id == current_index)
new (new_data) F(*bit_cast<F const*>(old_data));
else
Variant<IndexType, InitialIndex + 1, Ts...>::copy_(old_id, old_data, new_data);
}
};
template<typename IndexType, IndexType InitialIndex>
struct Variant<IndexType, InitialIndex> {
ALWAYS_INLINE static void delete_(IndexType, void*) { }
ALWAYS_INLINE static void move_(IndexType, void*, void*) { }
ALWAYS_INLINE static void copy_(IndexType, const void*, void*) { }
};
template<typename IndexType, typename... Ts>
struct VisitImpl {
template<typename RT, typename T, size_t I, typename Fn>
static consteval bool has_explicitly_named_overload()
{
// If we're not allowed to make a member function pointer and call it directly (without explicitly resolving it),
// we have a templated function on our hands (or a function overload set).
// in such cases, we don't have an explicitly named overload, and we would have to select it.
return requires { (declval<Fn>().*(&Fn::operator()))(declval<T>()); };
}
template<typename ReturnType, typename T, typename Visitor, auto... Is>
static consteval bool should_invoke_const_overload(IndexSequence<Is...>)
{
// Scan over all the different visitor functions, if none of them are suitable for calling with `T const&`, avoid calling that first.
return ((has_explicitly_named_overload<ReturnType, T, Is, typename Visitor::Types::template Type<Is>>()) || ...);
}
template<typename Self, typename Visitor, IndexType CurrentIndex = 0>
ALWAYS_INLINE static constexpr decltype(auto) visit(Self& self, IndexType id, const void* data, Visitor&& visitor) requires(CurrentIndex < sizeof...(Ts))
{
using T = typename TypeList<Ts...>::template Type<CurrentIndex>;
if (id == CurrentIndex) {
// Check if Visitor::operator() is an explicitly typed function (as opposed to a templated function)
// if so, try to call that with `T const&` first before copying the Variant's const-ness.
// This emulates normal C++ call semantics where templated functions are considered last, after all non-templated overloads
// are checked and found to be unusable.
using ReturnType = decltype(visitor(*bit_cast<T*>(data)));
if constexpr (should_invoke_const_overload<ReturnType, T, Visitor>(MakeIndexSequence<Visitor::Types::size>()))
return visitor(*bit_cast<AddConst<T>*>(data));
return visitor(*bit_cast<CopyConst<Self, T>*>(data));
}
if constexpr ((CurrentIndex + 1) < sizeof...(Ts))
return visit<Self, Visitor, CurrentIndex + 1>(self, id, data, forward<Visitor>(visitor));
else
VERIFY_NOT_REACHED();
}
};
struct VariantNoClearTag {
explicit VariantNoClearTag() = default;
};
struct VariantConstructTag {
explicit VariantConstructTag() = default;
};
template<typename T, typename Base>
struct VariantConstructors {
ALWAYS_INLINE VariantConstructors(T&& t)
{
internal_cast().clear_without_destruction();
internal_cast().set(move(t), VariantNoClearTag {});
}
ALWAYS_INLINE VariantConstructors(const T& t)
{
internal_cast().clear_without_destruction();
internal_cast().set(t, VariantNoClearTag {});
}
ALWAYS_INLINE VariantConstructors() = default;
private:
[[nodiscard]] ALWAYS_INLINE Base& internal_cast()
{
// Warning: Internal type shenanigans - VariantsConstrutors<T, Base> <- Base
// Not the other way around, so be _really_ careful not to cause issues.
return *reinterpret_cast<Base*>(this);
}
};
// Type list deduplication
// Since this is a big template mess, each template is commented with how and why it works.
struct ParameterPackTag {
};
// Pack<Ts...> is just a way to pass around the type parameter pack Ts
template<typename... Ts>
struct ParameterPack : ParameterPackTag {
};
// Blank<T> is a unique replacement for T, if T is a duplicate type.
template<typename T>
struct Blank {
};
template<typename A, typename P>
inline constexpr bool IsTypeInPack = false;
// IsTypeInPack<T, Pack<Ts...>> will just return whether 'T' exists in 'Ts'.
template<typename T, typename... Ts>
inline constexpr bool IsTypeInPack<T, ParameterPack<Ts...>> = (IsSame<T, Ts> || ...);
// Replaces T with Blank<T> if it exists in Qs.
template<typename T, typename... Qs>
using BlankIfDuplicate = Conditional<(IsTypeInPack<T, Qs> || ...), Blank<T>, T>;
template<unsigned I, typename...>
struct InheritFromUniqueEntries;
// InheritFromUniqueEntries will inherit from both Qs and Ts, but only scan entries going *forwards*
// that is to say, if it's scanning from index I in Qs, it won't scan for duplicates for entries before I
// as that has already been checked before.
// This makes sure that the search is linear in time (like the 'merge' step of merge sort).
template<unsigned I, typename... Ts, unsigned... Js, typename... Qs>
struct InheritFromUniqueEntries<I, ParameterPack<Ts...>, IndexSequence<Js...>, Qs...>
: public BlankIfDuplicate<Ts, Conditional<Js <= I, ParameterPack<>, Qs>...>... {
using BlankIfDuplicate<Ts, Conditional<Js <= I, ParameterPack<>, Qs>...>::BlankIfDuplicate...;
};
template<typename...>
struct InheritFromPacks;
// InheritFromPacks will attempt to 'merge' the pack 'Ps' with *itself*, but skip the duplicate entries
// (via InheritFromUniqueEntries).
template<unsigned... Is, typename... Ps>
struct InheritFromPacks<IndexSequence<Is...>, Ps...>
: public InheritFromUniqueEntries<Is, Ps, IndexSequence<Is...>, Ps...>... {
using InheritFromUniqueEntries<Is, Ps, IndexSequence<Is...>, Ps...>::InheritFromUniqueEntries...;
};
// Just a nice wrapper around InheritFromPacks, which will wrap any parameter packs in ParameterPack (unless it already is one).
template<typename... Ps>
using MergeAndDeduplicatePacks = InheritFromPacks<MakeIndexSequence<sizeof...(Ps)>, Conditional<IsBaseOf<ParameterPackTag, Ps>, Ps, ParameterPack<Ps>>...>;
}
namespace AK {
struct Empty {
};
template<typename... Ts>
struct Variant
: public Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...> {
private:
using IndexType = Conditional<sizeof...(Ts) < 255, u8, size_t>; // Note: size+1 reserved for internal value checks
static constexpr IndexType invalid_index = sizeof...(Ts);
template<typename T>
static constexpr IndexType index_of() { return Detail::index_of<T, IndexType, Ts...>(); }
public:
template<typename T>
static constexpr bool can_contain()
{
return index_of<T>() != invalid_index;
}
template<typename... NewTs>
Variant(Variant<NewTs...>&& old) requires((can_contain<NewTs>() && ...))
: Variant(move(old).template downcast<Ts...>())
{
}
template<typename... NewTs>
Variant(const Variant<NewTs...>& old) requires((can_contain<NewTs>() && ...))
: Variant(old.template downcast<Ts...>())
{
}
template<typename... NewTs>
friend struct Variant;
Variant() requires(!can_contain<Empty>()) = delete;
Variant() requires(can_contain<Empty>())
: Variant(Empty())
{
}
#ifdef AK_HAS_CONDITIONALLY_TRIVIAL
Variant(const Variant&) requires(!(IsCopyConstructible<Ts> && ...)) = delete;
Variant(const Variant&) = default;
Variant(Variant&&) requires(!(IsMoveConstructible<Ts> && ...)) = delete;
Variant(Variant&&) = default;
~Variant() requires(!(IsDestructible<Ts> && ...)) = delete;
~Variant() = default;
Variant& operator=(const Variant&) requires(!(IsCopyConstructible<Ts> && ...) || !(IsDestructible<Ts> && ...)) = delete;
Variant& operator=(const Variant&) = default;
Variant& operator=(Variant&&) requires(!(IsMoveConstructible<Ts> && ...) || !(IsDestructible<Ts> && ...)) = delete;
Variant& operator=(Variant&&) = default;
#endif
ALWAYS_INLINE Variant(const Variant& old)
#ifdef AK_HAS_CONDITIONALLY_TRIVIAL
requires(!(IsTriviallyCopyConstructible<Ts> && ...))
#endif
: Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...>()
, m_data {}
, m_index(old.m_index)
{
Helper::copy_(old.m_index, old.m_data, m_data);
}
// Note: A moved-from variant emulates the state of the object it contains
// so if a variant containing an int is moved from, it will still contain that int
// and if a variant with a nontrivial move ctor is moved from, it may or may not be valid
// but it will still contain the "moved-from" state of the object it previously contained.
ALWAYS_INLINE Variant(Variant&& old)
#ifdef AK_HAS_CONDITIONALLY_TRIVIAL
requires(!(IsTriviallyMoveConstructible<Ts> && ...))
#endif
: Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...>()
, m_index(old.m_index)
{
Helper::move_(old.m_index, old.m_data, m_data);
}
ALWAYS_INLINE ~Variant()
#ifdef AK_HAS_CONDITIONALLY_TRIVIAL
requires(!(IsTriviallyDestructible<Ts> && ...))
#endif
{
Helper::delete_(m_index, m_data);
}
ALWAYS_INLINE Variant& operator=(const Variant& other)
#ifdef AK_HAS_CONDITIONALLY_TRIVIAL
requires(!(IsTriviallyCopyConstructible<Ts> && ...) || !(IsTriviallyDestructible<Ts> && ...))
#endif
{
if (this != &other) {
if constexpr (!(IsTriviallyDestructible<Ts> && ...)) {
Helper::delete_(m_index, m_data);
}
m_index = other.m_index;
Helper::copy_(other.m_index, other.m_data, m_data);
}
return *this;
}
ALWAYS_INLINE Variant& operator=(Variant&& other)
#ifdef AK_HAS_CONDITIONALLY_TRIVIAL
requires(!(IsTriviallyMoveConstructible<Ts> && ...) || !(IsTriviallyDestructible<Ts> && ...))
#endif
{
if (this != &other) {
if constexpr (!(IsTriviallyDestructible<Ts> && ...)) {
Helper::delete_(m_index, m_data);
}
m_index = other.m_index;
Helper::move_(other.m_index, other.m_data, m_data);
}
return *this;
}
using Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...>::MergeAndDeduplicatePacks;
template<typename T, typename StrippedT = RemoveCVReference<T>>
void set(T&& t) requires(can_contain<StrippedT>())
{
constexpr auto new_index = index_of<StrippedT>();
Helper::delete_(m_index, m_data);
new (m_data) StrippedT(forward<T>(t));
m_index = new_index;
}
template<typename T, typename StrippedT = RemoveCVReference<T>>
void set(T&& t, Detail::VariantNoClearTag) requires(can_contain<StrippedT>())
{
constexpr auto new_index = index_of<StrippedT>();
new (m_data) StrippedT(forward<T>(t));
m_index = new_index;
}
template<typename T>
T* get_pointer() requires(can_contain<T>())
{
if (index_of<T>() == m_index)
return bit_cast<T*>(&m_data);
return nullptr;
}
template<typename T>
T& get() requires(can_contain<T>())
{
VERIFY(has<T>());
return *bit_cast<T*>(&m_data);
}
template<typename T>
const T* get_pointer() const requires(can_contain<T>())
{
if (index_of<T>() == m_index)
return bit_cast<const T*>(&m_data);
return nullptr;
}
template<typename T>
const T& get() const requires(can_contain<T>())
{
VERIFY(has<T>());
return *bit_cast<const T*>(&m_data);
}
template<typename T>
[[nodiscard]] bool has() const requires(can_contain<T>())
{
return index_of<T>() == m_index;
}
template<typename... Fs>
ALWAYS_INLINE decltype(auto) visit(Fs&&... functions)
{
Visitor<Fs...> visitor { forward<Fs>(functions)... };
return VisitHelper::visit(*this, m_index, m_data, move(visitor));
}
template<typename... Fs>
ALWAYS_INLINE decltype(auto) visit(Fs&&... functions) const
{
Visitor<Fs...> visitor { forward<Fs>(functions)... };
return VisitHelper::visit(*this, m_index, m_data, move(visitor));
}
template<typename... NewTs>
Variant<NewTs...> downcast() &&
{
Variant<NewTs...> instance { Variant<NewTs...>::invalid_index, Detail::VariantConstructTag {} };
visit([&](auto& value) {
if constexpr (Variant<NewTs...>::template can_contain<RemoveCVReference<decltype(value)>>())
instance.set(move(value), Detail::VariantNoClearTag {});
});
VERIFY(instance.m_index != instance.invalid_index);
return instance;
}
template<typename... NewTs>
Variant<NewTs...> downcast() const&
{
Variant<NewTs...> instance { Variant<NewTs...>::invalid_index, Detail::VariantConstructTag {} };
visit([&](const auto& value) {
if constexpr (Variant<NewTs...>::template can_contain<RemoveCVReference<decltype(value)>>())
instance.set(value, Detail::VariantNoClearTag {});
});
VERIFY(instance.m_index != instance.invalid_index);
return instance;
}
private:
static constexpr auto data_size = Detail::integer_sequence_generate_array<size_t>(0, IntegerSequence<size_t, sizeof(Ts)...>()).max();
static constexpr auto data_alignment = Detail::integer_sequence_generate_array<size_t>(0, IntegerSequence<size_t, alignof(Ts)...>()).max();
using Helper = Detail::Variant<IndexType, 0, Ts...>;
using VisitHelper = Detail::VisitImpl<IndexType, Ts...>;
template<typename T_, typename U_>
friend struct Detail::VariantConstructors;
explicit Variant(IndexType index, Detail::VariantConstructTag)
: Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...>()
, m_index(index)
{
}
ALWAYS_INLINE void clear_without_destruction()
{
__builtin_memset(m_data, 0, data_size);
m_index = invalid_index;
}
template<typename... Fs>
struct Visitor : Fs... {
using Types = TypeList<Fs...>;
Visitor(Fs&&... args)
: Fs(forward<Fs>(args))...
{
}
using Fs::operator()...;
};
// Note: Make sure not to default-initialize!
// VariantConstructors::VariantConstructors(T) will set this to the correct value
// So default-constructing to anything will leave the first initialization with that value instead of the correct one.
alignas(data_alignment) u8 m_data[data_size];
IndexType m_index;
};
}
using AK::Empty;
using AK::Variant;
|