summaryrefslogtreecommitdiff
path: root/AK/UFixedBigInt.h
blob: 584d762cf9841830a1d8d4e476e405ff0678412f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
/*
 * Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/BuiltinWrappers.h>
#include <AK/Checked.h>
#include <AK/Concepts.h>
#include <AK/Format.h>
#include <AK/NumericLimits.h>
#include <AK/StdLibExtraDetails.h>
#include <AK/StdLibExtras.h>
#include <AK/StringBuilder.h>

namespace AK {

template<typename T>
requires(sizeof(T) >= sizeof(u64) && IsUnsigned<T>) class UFixedBigInt;

// FIXME: This breaks formatting
// template<typename T>
// constexpr inline bool Detail::IsIntegral<UFixedBigInt<T>> = true;

template<typename T>
constexpr inline bool Detail::IsUnsigned<UFixedBigInt<T>> = true;
template<typename T>
constexpr inline bool Detail::IsSigned<UFixedBigInt<T>> = false;

template<typename T>
struct NumericLimits<UFixedBigInt<T>> {
    static constexpr UFixedBigInt<T> min() { return 0; }
    static constexpr UFixedBigInt<T> max() { return { NumericLimits<T>::max(), NumericLimits<T>::max() }; }
    static constexpr bool is_signed() { return false; }
};

template<Unsigned T>
struct UFixedBigIntMultiplicationResult {
    T low;
    T high;
};

template<typename T>
requires(sizeof(T) >= sizeof(u64) && IsUnsigned<T>) class UFixedBigInt {
public:
    using R = UFixedBigInt<T>;

    constexpr UFixedBigInt() = default;
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr UFixedBigInt(U low)
        : m_low(low)
        , m_high(0u)
    {
    }
    template<Unsigned U, Unsigned U2>
    requires(sizeof(T) >= sizeof(U) && sizeof(T) >= sizeof(U2)) constexpr UFixedBigInt(U low, U2 high)
        : m_low(low)
        , m_high(high)
    {
    }
    constexpr T& low()
    {
        return m_low;
    }
    constexpr const T& low() const
    {
        return m_low;
    }
    constexpr T& high()
    {
        return m_high;
    }
    constexpr const T& high() const
    {
        return m_high;
    }

    Span<u8> bytes()
    {
        return Span<u8>(reinterpret_cast<u8*>(this), sizeof(R));
    }
    Span<const u8> bytes() const
    {
        return Span<const u8>(reinterpret_cast<u8 const*>(this), sizeof(R));
    }

    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr explicit operator U() const
    {
        return static_cast<U>(m_low);
    }

    // Utils
    constexpr size_t clz() const requires(IsSame<T, u64>)
    {
        if (m_high)
            return count_leading_zeroes(m_high);
        else
            return sizeof(T) * 8 + count_leading_zeroes(m_low);
    }
    constexpr size_t clz() const requires(!IsSame<T, u64>)
    {
        if (m_high)
            return m_high.clz();
        else
            return sizeof(T) * 8 + m_low.clz();
    }
    constexpr size_t ctz() const requires(IsSame<T, u64>)
    {
        if (m_low)
            return count_trailing_zeroes(m_low);
        else
            return sizeof(T) * 8 + count_trailing_zeroes(m_high);
    }
    constexpr size_t ctz() const requires(!IsSame<T, u64>)
    {
        if (m_low)
            return m_low.ctz();
        else
            return sizeof(T) * 8 + m_high.ctz();
    }
    constexpr size_t popcnt() const requires(IsSame<T, u64>)
    {
        return __builtin_popcntll(m_low) + __builtin_popcntll(m_high);
    }
    constexpr size_t popcnt() const requires(!IsSame<T, u64>)
    {
        return m_low.popcnt() + m_high.popcnt();
    }

    // Comparison Operations
    constexpr bool operator!() const
    {
        return !m_low && !m_high;
    }
    constexpr explicit operator bool() const
    {
        return m_low || m_high;
    }
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr bool operator==(const U& other) const
    {
        return !m_high && m_low == other;
    }
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr bool operator!=(const U& other) const
    {
        return m_high || m_low != other;
    }
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr bool operator>(const U& other) const
    {
        return m_high || m_low > other;
    }
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr bool operator<(const U& other) const
    {
        return !m_high && m_low < other;
    }
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr bool operator>=(const U& other) const
    {
        return *this == other || *this > other;
    }
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr bool operator<=(const U& other) const
    {
        return *this == other || *this < other;
    }

    constexpr bool operator==(const R& other) const
    {
        return m_low == other.low() && m_high == other.high();
    }
    constexpr bool operator!=(const R& other) const
    {
        return m_low != other.low() || m_high != other.high();
    }
    constexpr bool operator>(const R& other) const
    {
        return m_high > other.high()
            || (m_high == other.high() && m_low > other.low());
    }
    constexpr bool operator<(const R& other) const
    {
        return m_high < other.high()
            || (m_high == other.high() && m_low < other.low());
    }
    constexpr bool operator>=(const R& other) const
    {
        return *this == other || *this > other;
    }
    constexpr bool operator<=(const R& other) const
    {
        return *this == other || *this < other;
    }

    // Bitwise operations
    constexpr R operator~() const
    {
        return { ~m_low, ~m_high };
    }
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr U operator&(const U& other) const
    {
        return static_cast<const U>(m_low) & other;
    }
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr R operator|(const U& other) const
    {
        return { m_low | other, m_high };
    }
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr R operator^(const U& other) const
    {
        return { m_low ^ other, m_high };
    }
    template<Unsigned U>
    constexpr R operator<<(const U& shift) const
    {
        if (shift >= sizeof(R) * 8u)
            return 0u;
        if (shift >= sizeof(T) * 8u)
            return R { 0u, m_low << (shift - sizeof(T) * 8u) };
        if (!shift)
            return *this;

        T overflow = m_low >> (sizeof(T) * 8u - shift);
        return R { m_low << shift, (m_high << shift) | overflow };
    }
    template<Unsigned U>
    constexpr R operator>>(const U& shift) const
    {
        if (shift >= sizeof(R) * 8u)
            return 0u;
        if (shift >= sizeof(T) * 8u)
            return m_high >> (shift - sizeof(T) * 8u);
        if (!shift)
            return *this;

        T underflow = m_high << (sizeof(T) * 8u - shift);
        return R { (m_low >> shift) | underflow, m_high >> shift };
    }
    template<Unsigned U>
    constexpr R rol(const U& shift) const
    {
        return (*this >> sizeof(T) * 8u - shift) | (*this << shift);
    }
    template<Unsigned U>
    constexpr R ror(const U& shift) const
    {
        return (*this << sizeof(T) * 8u - shift) | (*this >> shift);
    }

    constexpr R operator&(const R& other) const
    {
        return { m_low & other.low(), m_high & other.high() };
    }
    constexpr R operator|(const R& other) const
    {
        return { m_low | other.low(), m_high | other.high() };
    }
    constexpr R operator^(const R& other) const
    {
        return { m_low ^ other.low(), m_high ^ other.high() };
    }

    // Bitwise assignment
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr R& operator&=(const U& other)
    {
        m_high = 0u;
        m_low &= other;
        return *this;
    }
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr R& operator|=(const U& other)
    {
        m_low |= other;
        return *this;
    }
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr R& operator^=(const U& other)
    {
        m_low ^= other;
        return *this;
    }
    template<Unsigned U>
    constexpr R& operator>>=(const U& other)
    {
        *this = *this >> other;
        return *this;
    }
    template<Unsigned U>
    constexpr R& operator<<=(const U& other)
    {
        *this = *this << other;
        return *this;
    }

    constexpr R& operator&=(const R& other)
    {
        m_high &= other.high();
        m_low &= other.low();
        return *this;
    }
    constexpr R& operator|=(const R& other)
    {
        m_high |= other.high();
        m_low |= other.low();
        return *this;
    }
    constexpr R& operator^=(const R& other)
    {
        m_high ^= other.high();
        m_low ^= other.low();
        return *this;
    }

    static constexpr size_t my_size()
    {
        return sizeof(R);
    }

    // Arithmetic

    // implies size of less than u64, so passing references isn't useful
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U) && IsSame<T, u64>) constexpr R addc(const U other, bool& carry) const
    {
        bool low_carry = Checked<T>::addition_would_overflow(m_low, other);
        low_carry |= Checked<T>::addition_would_overflow(m_low, carry);
        bool high_carry = Checked<T>::addition_would_overflow(m_high, low_carry);

        T lower = m_low + other + carry;
        T higher = m_high + low_carry;

        carry = high_carry;

        return {
            lower,
            higher
        };
    }
    template<Unsigned U>
    requires(my_size() > sizeof(U) && sizeof(T) > sizeof(u64)) constexpr R addc(const U& other, bool& carry) const
    {
        T lower = m_low.addc(other, carry);
        T higher = m_high.addc(0u, carry);

        return {
            lower,
            higher
        };
    }
    template<Unsigned U>
    requires(IsSame<R, U>&& IsSame<T, u64>) constexpr R addc(const U& other, bool& carry) const
    {
        bool low_carry = Checked<T>::addition_would_overflow(m_low, other.low());
        bool high_carry = Checked<T>::addition_would_overflow(m_high, other.high());

        T lower = m_low + other.low();
        T higher = m_high + other.high();
        low_carry |= Checked<T>::addition_would_overflow(lower, carry);
        high_carry |= Checked<T>::addition_would_overflow(higher, low_carry);

        lower += carry;
        higher += low_carry;
        carry = high_carry;

        return {
            lower,
            higher
        };
    }
    template<Unsigned U>
    requires(IsSame<R, U> && sizeof(T) > sizeof(u64)) constexpr R addc(const U& other, bool& carry) const
    {
        T lower = m_low.addc(other.low(), carry);
        T higher = m_high.addc(other.high(), carry);

        return {
            lower,
            higher
        };
    }
    template<Unsigned U>
    requires(my_size() < sizeof(U)) constexpr U addc(const U& other, bool& carry) const
    {
        return other.addc(*this, carry);
    }

    // FIXME: subc for sizeof(T) < sizeof(U)
    template<Unsigned U>
    requires(sizeof(T) >= sizeof(U)) constexpr R subc(const U& other, bool& carry) const
    {
        bool low_carry = (!m_low && carry) || (m_low - carry) < other;
        bool high_carry = !m_high && low_carry;

        T lower = m_low - other - carry;
        T higher = m_high - low_carry;
        carry = high_carry;

        return { lower, higher };
    }
    constexpr R subc(const R& other, bool& carry) const
    {
        bool low_carry = (!m_low && carry) || (m_low - carry) < other.low();
        bool high_carry = (!m_high && low_carry) || (m_high - low_carry) < other.high();

        T lower = m_low - other.low() - carry;
        T higher = m_high - other.high() - low_carry;
        carry = high_carry;

        return { lower, higher };
    }

    constexpr R operator+(bool const& other) const
    {
        bool carry = false; // unused
        return addc((u8)other, carry);
    }
    template<Unsigned U>
    constexpr R operator+(const U& other) const
    {
        bool carry = false; // unused
        return addc(other, carry);
    }

    constexpr R operator-(bool const& other) const
    {
        bool carry = false; // unused
        return subc((u8)other, carry);
    }

    template<Unsigned U>
    constexpr R operator-(const U& other) const
    {
        bool carry = false; // unused
        return subc(other, carry);
    }

    template<Unsigned U>
    constexpr R& operator+=(const U& other)
    {
        *this = *this + other;
        return *this;
    }
    template<Unsigned U>
    constexpr R& operator-=(const U& other)
    {
        *this = *this - other;
        return *this;
    }

    constexpr R operator++()
    {
        // x++
        auto old = *this;
        *this += 1;
        return old;
    }
    constexpr R& operator++(int)
    {
        // ++x
        *this += 1;
        return *this;
    }
    constexpr R operator--()
    {
        // x--
        auto old = *this;
        *this -= 1;
        return old;
    }
    constexpr R& operator--(int)
    {
        // --x
        *this -= 1;
        return *this;
    }

    // FIXME: no restraints on this
    template<Unsigned U>
    requires(my_size() >= sizeof(U)) constexpr R div_mod(const U& divisor, U& remainder) const
    {
        // FIXME: Is there a better way to raise a division by 0?
        //        Maybe as a compiletime warning?
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdiv-by-zero"
        if (!divisor) {
            int volatile x = 1;
            int volatile y = 0;
            [[maybe_unused]] int volatile z = x / y;
        }
#pragma GCC diagnostic pop

        // fastpaths
        if (*this < divisor) {
            remainder = static_cast<U>(*this);
            return 0u;
        }
        if (*this == divisor) {
            remainder = 0u;
            return 1u;
        }
        if (divisor == 1u) {
            remainder = 0u;
            return *this;
        }

        remainder = 0u;
        R quotient = 0u;

        for (ssize_t i = sizeof(R) * 8 - clz() - 1; i >= 0; --i) {
            remainder <<= 1u;
            remainder |= (*this >> (size_t)i) & 1u;
            if (remainder >= divisor) {
                remainder -= divisor;
                quotient |= R { 1u } << (size_t)i;
            }
        }

        return quotient;
    }

    template<Unsigned U>
    constexpr R operator*(U other) const
    {
        R res = 0u;
        R that = *this;
        for (; other != 0u; other >>= 1u) {
            if (other & 1u)
                res += that;
            that <<= 1u;
        }
        return res;
    }

    template<Unsigned U>
    requires(IsSame<R, U>&& IsSame<T, u64>) constexpr UFixedBigIntMultiplicationResult<R> wide_multiply(U const& other) const
    {
        auto mult_64_to_128 = [](u64 a, u64 b) -> UFixedBigIntMultiplicationResult<u64> {
#ifdef __SIZEOF_INT128__
            unsigned __int128 result = (unsigned __int128)a * b;
            u64 low = result;
            u64 high = result >> 64;
            return { low, high };
#else
            u32 a_low = a;
            u32 a_high = (a >> 32);
            u32 b_low = b;
            u32 b_high = (b >> 32);

            u64 ll_result = (u64)a_low * b_low;
            u64 lh_result = (u64)a_low * b_high;
            u64 hl_result = (u64)a_high * b_low;
            u64 hh_result = (u64)a_high * b_high;

            UFixedBigInt<u64> ll { ll_result, 0u };
            UFixedBigInt<u64> lh { lh_result << 32, lh_result >> 32 };
            UFixedBigInt<u64> hl { hl_result << 32, hl_result >> 32 };
            UFixedBigInt<u64> hh { 0u, hh_result };

            UFixedBigInt<u64> result = ll + lh + hl + hh;
            return { result.low(), result.high() };
#endif
        };

        auto ll_result = mult_64_to_128(m_low, other.low());
        auto lh_result = mult_64_to_128(m_low, other.high());
        auto hl_result = mult_64_to_128(m_high, other.low());
        auto hh_result = mult_64_to_128(m_high, other.high());

        UFixedBigInt<R> ll { R { ll_result.low, ll_result.high }, R { 0u, 0u } };
        UFixedBigInt<R> lh { R { 0u, lh_result.low }, R { lh_result.high, 0u } };
        UFixedBigInt<R> hl { R { 0u, hl_result.low }, R { hl_result.high, 0u } };
        UFixedBigInt<R> hh { R { 0u, 0u }, R { hh_result.low, hh_result.high } };

        UFixedBigInt<R> result = ll + lh + hl + hh;
        return { result.low(), result.high() };
    }

    template<Unsigned U>
    requires(IsSame<R, U> && sizeof(T) > sizeof(u64)) constexpr UFixedBigIntMultiplicationResult<R> wide_multiply(U const& other) const
    {
        T left_low = m_low;
        T left_high = m_high;
        T right_low = other.low();
        T right_high = other.high();

        auto ll_result = left_low.wide_multiply(right_low);
        auto lh_result = left_low.wide_multiply(right_high);
        auto hl_result = left_high.wide_multiply(right_low);
        auto hh_result = left_high.wide_multiply(right_high);

        UFixedBigInt<R> ll { R { ll_result.low, ll_result.high }, R { 0u, 0u } };
        UFixedBigInt<R> lh { R { 0u, lh_result.low }, R { lh_result.high, 0u } };
        UFixedBigInt<R> hl { R { 0u, hl_result.low }, R { hl_result.high, 0u } };
        UFixedBigInt<R> hh { R { 0u, 0u }, R { hh_result.low, hh_result.high } };

        UFixedBigInt<R> result = ll + lh + hl + hh;
        return { result.low(), result.high() };
    }

    template<Unsigned U>
    constexpr R operator/(const U& other) const
    {
        U mod { 0u }; // unused
        return div_mod(other, mod);
    }
    template<Unsigned U>
    constexpr U operator%(const U& other) const
    {
        R res { 0u };
        div_mod(other, res);
        return res;
    }

    template<Unsigned U>
    constexpr R& operator*=(const U& other)
    {
        *this = *this * other;
        return *this;
    }
    template<Unsigned U>
    constexpr R& operator/=(const U& other)
    {
        *this = *this / other;
        return *this;
    }
    template<Unsigned U>
    constexpr R& operator%=(const U& other)
    {
        *this = *this % other;
        return *this;
    }

    constexpr R sqrt() const
    {
        // Bitwise method: https://en.wikipedia.org/wiki/Integer_square_root#Using_bitwise_operations
        // the bitwise method seems to be way faster then Newtons:
        // https://quick-bench.com/q/eXZwW1DVhZxLE0llumeCXkfOK3Q
        if (*this == 1u)
            return 1u;

        ssize_t shift = (sizeof(R) * 8 - clz()) & ~1ULL;
        // should be equivalent to:
        // long shift = 2;
        // while ((val >> shift) != 0)
        //   shift += 2;

        R res = 0u;
        while (shift >= 0) {
            res = res << 1u;
            R large_cand = (res | 1u);
            if (*this >> (size_t)shift >= large_cand * large_cand)
                res = large_cand;
            shift -= 2;
        }
        return res;
    }

    constexpr R pow(u64 exp)
    {
        // Montgomery's Ladder Technique
        // https://en.wikipedia.org/wiki/Exponentiation_by_squaring#Montgomery's_ladder_technique
        R x1 = *this;
        R x2 = *this * *this;
        u64 exp_copy = exp;
        for (ssize_t i = sizeof(u64) * 8 - count_leading_zeroes(exp) - 2; i >= 0; --i) {
            if (exp_copy & 1u) {
                x2 *= x1;
                x1 *= x1;
            } else {
                x1 *= x2;
                x2 *= x2;
            }
            exp_copy >>= 1u;
        }
        return x1;
    }
    template<Unsigned U>
    requires(sizeof(U) > sizeof(u64)) constexpr R pow(U exp)
    {
        // Montgomery's Ladder Technique
        // https://en.wikipedia.org/wiki/Exponentiation_by_squaring#Montgomery's_ladder_technique
        R x1 = *this;
        R x2 = *this * *this;
        U exp_copy = exp;
        for (ssize_t i = sizeof(U) * 8 - exp().clz() - 2; i >= 0; --i) {
            if (exp_copy & 1u) {
                x2 *= x1;
                x1 *= x1;
            } else {
                x1 *= x2;
                x2 *= x2;
            }
            exp_copy >>= 1u;
        }
        return x1;
    }

    template<Unsigned U>
    constexpr U pow_mod(u64 exp, U mod)
    {
        // Left to right binary method:
        // https://en.wikipedia.org/wiki/Modular_exponentiation#Left-to-right_binary_method
        // FIXME: this is not sidechanel proof
        if (!mod)
            return 0u;

        U res = 1;
        u64 exp_copy = exp;
        for (size_t i = sizeof(u64) - count_leading_zeroes(exp) - 1u; i < exp; ++i) {
            res *= res;
            res %= mod;
            if (exp_copy & 1u) {
                res = (*this * res) % mod;
            }
            exp_copy >>= 1u;
        }
        return res;
    }
    template<Unsigned ExpT, Unsigned U>
    requires(sizeof(ExpT) > sizeof(u64)) constexpr U pow_mod(ExpT exp, U mod)
    {
        // Left to right binary method:
        // https://en.wikipedia.org/wiki/Modular_exponentiation#Left-to-right_binary_method
        // FIXME: this is not side channel proof
        if (!mod)
            return 0u;

        U res = 1;
        ExpT exp_copy = exp;
        for (size_t i = sizeof(ExpT) - exp.clz() - 1u; i < exp; ++i) {
            res *= res;
            res %= mod;
            if (exp_copy & 1u) {
                res = (*this * res) % mod;
            }
            exp_copy >>= 1u;
        }
        return res;
    }

    constexpr size_t log2()
    {
        // FIXME: proper rounding
        return sizeof(R) - clz();
    }
    constexpr size_t logn(u64 base)
    {
        // FIXME: proper rounding
        return log2() / (sizeof(u64) - count_leading_zeroes(base));
    }
    template<Unsigned U>
    requires(sizeof(U) > sizeof(u64)) constexpr size_t logn(U base)
    {
        // FIXME: proper rounding
        return log2() / base.log2();
    }

    constexpr u64 fold_or() const requires(IsSame<T, u64>)
    {
        return m_low | m_high;
    }
    constexpr u64 fold_or() const requires(!IsSame<T, u64>)
    {
        return m_low.fold_or() | m_high.fold_or();
    }
    constexpr bool is_zero_constant_time() const
    {
        return fold_or() == 0;
    }

    constexpr u64 fold_xor_pair(R& other) const requires(IsSame<T, u64>)
    {
        return (m_low ^ other.low()) | (m_high ^ other.high());
    }
    constexpr u64 fold_xor_pair(R& other) const requires(!IsSame<T, u64>)
    {
        return (m_low.fold_xor_pair(other.low())) | (m_high.fold_xor_pair(other.high()));
    }
    constexpr bool is_equal_to_constant_time(R& other)
    {
        return fold_xor_pair(other) == 0;
    }

private:
    T m_low;
    T m_high;
};

// reverse operators
template<Unsigned U, Unsigned T>
requires(sizeof(U) < sizeof(T) * 2) constexpr bool operator<(const U a, UFixedBigInt<T> const& b) { return b >= a; }
template<Unsigned U, Unsigned T>
requires(sizeof(U) < sizeof(T) * 2) constexpr bool operator>(const U a, UFixedBigInt<T> const& b) { return b <= a; }
template<Unsigned U, Unsigned T>
requires(sizeof(U) < sizeof(T) * 2) constexpr bool operator<=(const U a, UFixedBigInt<T> const& b) { return b > a; }
template<Unsigned U, Unsigned T>
requires(sizeof(U) < sizeof(T) * 2) constexpr bool operator>=(const U a, UFixedBigInt<T> const& b) { return b < a; }

template<Unsigned T>
struct Formatter<UFixedBigInt<T>> : StandardFormatter {
    Formatter() = default;
    explicit Formatter(StandardFormatter formatter)
        : StandardFormatter(formatter)
    {
    }

    ErrorOr<void> format(FormatBuilder& builder, UFixedBigInt<T> value)
    {
        if (m_precision.has_value())
            VERIFY_NOT_REACHED();

        if (m_mode == Mode::Pointer) {
            // these are way to big for a pointer
            VERIFY_NOT_REACHED();
        }
        if (m_mode == Mode::Default)
            m_mode = Mode::Hexadecimal;

        if (!value.high()) {
            Formatter<T> formatter { *this };
            return formatter.format(builder, value.low());
        }

        u8 base = 0;
        if (m_mode == Mode::Binary) {
            base = 2;
        } else if (m_mode == Mode::BinaryUppercase) {
            base = 2;
        } else if (m_mode == Mode::Octal) {
            TODO();
        } else if (m_mode == Mode::Decimal) {
            TODO();
        } else if (m_mode == Mode::Hexadecimal) {
            base = 16;
        } else if (m_mode == Mode::HexadecimalUppercase) {
            base = 16;
        } else {
            VERIFY_NOT_REACHED();
        }
        ssize_t width = m_width.value_or(0);
        ssize_t lower_length = ceil_div(sizeof(T) * 8, (ssize_t)base);
        Formatter<T> formatter { *this };
        formatter.m_width = max(width - lower_length, (ssize_t)0);
        TRY(formatter.format(builder, value.high()));
        TRY(builder.put_literal("'"sv));
        formatter.m_zero_pad = true;
        formatter.m_alternative_form = false;
        formatter.m_width = lower_length;
        TRY(formatter.format(builder, value.low()));
        return {};
    }
};
}

// Nit: Doing these as custom classes might be faster, especially when writing
//      then in SSE, but this would cause a lot of Code duplication and due to
//      the nature of constexprs and the intelligence of the compiler they might
//      be using SSE/MMX either way

// these sizes should suffice for most usecases
using u128 = AK::UFixedBigInt<u64>;
using u256 = AK::UFixedBigInt<u128>;
using u512 = AK::UFixedBigInt<u256>;
using u1024 = AK::UFixedBigInt<u512>;
using u2048 = AK::UFixedBigInt<u1024>;
using u4096 = AK::UFixedBigInt<u2048>;