1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Forward.h>
#include <AK/HashMap.h>
#include <AK/Types.h>
namespace AK {
namespace Detail {
template<typename TypeA, typename Default>
struct SubstituteIfVoid {
using Type = TypeA;
};
template<typename Default>
struct SubstituteIfVoid<void, Default> {
using Type = Default;
};
template<typename DeclaredBaseType, typename DefaultBaseType, typename ValueType, typename MetadataT, typename ValueTraits>
class Trie {
using BaseType = typename SubstituteIfVoid<DeclaredBaseType, DefaultBaseType>::Type;
class ConstIterator {
public:
static ConstIterator end() { return {}; }
bool operator==(const ConstIterator& other) const { return m_current_node == other.m_current_node; }
const BaseType& operator*() const { return static_cast<const BaseType&>(*m_current_node); }
const BaseType* operator->() const { return static_cast<const BaseType*>(m_current_node); }
void operator++() { skip_to_next(); }
explicit ConstIterator(const Trie& node)
{
m_current_node = &node;
m_state.empend(false, node.m_children.begin(), node.m_children.end());
}
private:
void skip_to_next()
{
auto& current_state = m_state.last();
if (current_state.did_generate_root)
++current_state.it;
else
current_state.did_generate_root = true;
if (current_state.it == current_state.end)
return pop_and_get_next();
m_current_node = &*(*current_state.it).value;
m_state.empend(false, m_current_node->m_children.begin(), m_current_node->m_children.end());
}
void pop_and_get_next()
{
m_state.take_last();
if (m_state.is_empty()) {
m_current_node = nullptr;
return;
}
skip_to_next();
}
ConstIterator() = default;
struct State {
bool did_generate_root { false };
typename HashMap<ValueType, NonnullOwnPtr<Trie>, ValueTraits>::ConstIteratorType it;
typename HashMap<ValueType, NonnullOwnPtr<Trie>, ValueTraits>::ConstIteratorType end;
};
Vector<State> m_state;
const Trie* m_current_node { nullptr };
};
public:
using MetadataType = MetadataT;
Trie(ValueType value, Optional<MetadataType> metadata)
: m_value(move(value))
, m_metadata(move(metadata))
{
}
template<typename It>
BaseType& traverse_until_last_accessible_node(It& it, const It& end)
{
Trie* node = this;
for (; it < end; ++it) {
auto next_it = node->m_children.find(*it);
if (next_it == node->m_children.end())
return static_cast<BaseType&>(*node);
node = &*(*next_it).value;
}
return static_cast<BaseType&>(*node);
}
template<typename It>
const BaseType& traverse_until_last_accessible_node(It& it, const It& end) const { return const_cast<Trie*>(this)->traverse_until_last_accessible_node(it, end); }
template<typename It>
BaseType& traverse_until_last_accessible_node(const It& begin, const It& end)
{
auto it = begin;
return const_cast<Trie*>(this)->traverse_until_last_accessible_node(it, end);
}
template<typename It>
const BaseType& traverse_until_last_accessible_node(const It& begin, const It& end) const
{
auto it = begin;
return const_cast<Trie*>(this)->traverse_until_last_accessible_node(it, end);
}
Optional<MetadataType> metadata() const requires(!IsNullPointer<MetadataType>) { return m_metadata; }
void set_metadata(MetadataType metadata) requires(!IsNullPointer<MetadataType>) { m_metadata = move(metadata); }
const MetadataType& metadata_value() const requires(!IsNullPointer<MetadataType>) { return m_metadata.value(); }
const ValueType& value() const { return m_value; }
ValueType& value() { return m_value; }
Trie& ensure_child(ValueType value, Optional<MetadataType> metadata = {})
{
auto it = m_children.find(value);
if (it == m_children.end()) {
auto node = make<Trie>(value, move(metadata));
auto& node_ref = *node;
m_children.set(move(value), move(node));
return static_cast<BaseType&>(node_ref);
}
auto& node_ref = *it->value;
if (metadata.has_value())
node_ref.m_metadata = move(metadata);
return static_cast<BaseType&>(node_ref);
}
template<typename It, typename ProvideMetadataFunction>
BaseType& insert(
It& it, const It& end, MetadataType metadata, ProvideMetadataFunction provide_missing_metadata) requires(!IsNullPointer<MetadataType>)
{
Trie* last_root_node = &traverse_until_last_accessible_node(it, end);
for (; it != end; ++it)
last_root_node = static_cast<Trie*>(&last_root_node->ensure_child(*it, provide_missing_metadata(static_cast<BaseType&>(*last_root_node), it)));
last_root_node->set_metadata(move(metadata));
return static_cast<BaseType&>(*last_root_node);
}
template<typename It>
BaseType& insert(It& it, const It& end) requires(IsNullPointer<MetadataType>)
{
Trie* last_root_node = &traverse_until_last_accessible_node(it, end);
for (; it != end; ++it)
last_root_node = static_cast<Trie*>(&last_root_node->ensure_child(*it, {}));
return static_cast<BaseType&>(*last_root_node);
}
template<typename It, typename ProvideMetadataFunction>
BaseType& insert(
const It& begin, const It& end, MetadataType metadata, ProvideMetadataFunction provide_missing_metadata) requires(!IsNullPointer<MetadataType>)
{
auto it = begin;
return insert(it, end, move(metadata), move(provide_missing_metadata));
}
template<typename It>
BaseType& insert(const It& begin, const It& end) requires(IsNullPointer<MetadataType>)
{
auto it = begin;
return insert(it, end);
}
ConstIterator begin() const { return ConstIterator(*this); }
ConstIterator end() const { return ConstIterator::end(); }
[[nodiscard]] bool is_empty() const { return m_children.is_empty(); }
void clear() { m_children.clear(); }
BaseType deep_copy()
{
Trie root(m_value, m_metadata);
for (auto& it : m_children)
root.m_children.set(it.key, make<Trie>(it.value->deep_copy()));
return static_cast<BaseType&&>(move(root));
}
private:
ValueType m_value;
Optional<MetadataType> m_metadata;
HashMap<ValueType, NonnullOwnPtr<Trie>, ValueTraits> m_children;
};
template<typename BaseType, typename DefaultBaseType, typename ValueType, typename ValueTraits>
class Trie<BaseType, DefaultBaseType, ValueType, void, ValueTraits> : public Trie<BaseType, DefaultBaseType, ValueType, decltype(nullptr), ValueTraits> {
using Trie<BaseType, DefaultBaseType, ValueType, decltype(nullptr), ValueTraits>::Trie;
};
}
template<typename ValueType, typename MetadataT = void, typename ValueTraits = Traits<ValueType>, typename BaseT = void>
class Trie : public Detail::Trie<BaseT, Trie<ValueType, MetadataT, ValueTraits>, ValueType, MetadataT, ValueTraits> {
public:
using DetailTrie = Detail::Trie<BaseT, Trie<ValueType, MetadataT, ValueTraits>, ValueType, MetadataT, ValueTraits>;
using MetadataType = typename DetailTrie::MetadataType;
Trie(ValueType value, MetadataType metadata) requires(!IsVoid<MetadataType> && !IsNullPointer<MetadataType>)
: DetailTrie(move(value), move(metadata))
{
}
explicit Trie(ValueType value)
: DetailTrie(move(value), Optional<MetadataType> {})
{
}
};
}
using AK::Trie;
|