1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Checked.h>
#include <AK/Time.h>
// Make a reasonable guess as to which timespec/timeval definition to use.
// It doesn't really matter, since both are identical.
#ifdef KERNEL
# include <Kernel/UnixTypes.h>
#else
# include <sys/time.h>
# include <time.h>
#endif
namespace AK {
int days_in_month(int year, unsigned month)
{
VERIFY(month >= 1 && month <= 12);
if (month == 2)
return is_leap_year(year) ? 29 : 28;
bool is_long_month = (month == 1 || month == 3 || month == 5 || month == 7 || month == 8 || month == 10 || month == 12);
return is_long_month ? 31 : 30;
}
unsigned day_of_week(int year, unsigned month, int day)
{
VERIFY(month >= 1 && month <= 12);
constexpr Array seek_table = { 0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4 };
if (month < 3)
--year;
return (year + year / 4 - year / 100 + year / 400 + seek_table[month - 1] + day) % 7;
}
Duration Duration::from_ticks(clock_t ticks, time_t ticks_per_second)
{
auto secs = ticks % ticks_per_second;
i32 nsecs = 1'000'000'000 * (ticks - (ticks_per_second * secs)) / ticks_per_second;
i32 extra_secs = sane_mod(nsecs, 1'000'000'000);
return Duration::from_half_sanitized(secs, extra_secs, nsecs);
}
Duration Duration::from_timespec(const struct timespec& ts)
{
i32 nsecs = ts.tv_nsec;
i32 extra_secs = sane_mod(nsecs, 1'000'000'000);
return Duration::from_half_sanitized(ts.tv_sec, extra_secs, nsecs);
}
Duration Duration::from_timeval(const struct timeval& tv)
{
i32 usecs = tv.tv_usec;
i32 extra_secs = sane_mod(usecs, 1'000'000);
VERIFY(0 <= usecs && usecs < 1'000'000);
return Duration::from_half_sanitized(tv.tv_sec, extra_secs, usecs * 1'000);
}
i64 Duration::to_truncated_seconds() const
{
VERIFY(m_nanoseconds < 1'000'000'000);
if (m_seconds < 0 && m_nanoseconds) {
// Since m_seconds is negative, adding 1 can't possibly overflow
return m_seconds + 1;
}
return m_seconds;
}
i64 Duration::to_truncated_milliseconds() const
{
VERIFY(m_nanoseconds < 1'000'000'000);
Checked<i64> milliseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
milliseconds *= 1'000;
milliseconds += m_nanoseconds / 1'000'000;
if (m_seconds < 0) {
if (m_nanoseconds % 1'000'000 != 0) {
// Does not overflow: milliseconds <= 1'999.
milliseconds++;
}
// We dropped one second previously, put it back in now that we have handled the rounding.
milliseconds -= 1'000;
}
if (!milliseconds.has_overflow())
return milliseconds.value();
return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
}
i64 Duration::to_truncated_microseconds() const
{
VERIFY(m_nanoseconds < 1'000'000'000);
Checked<i64> microseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
microseconds *= 1'000'000;
microseconds += m_nanoseconds / 1'000;
if (m_seconds < 0) {
if (m_nanoseconds % 1'000 != 0) {
// Does not overflow: microseconds <= 1'999'999.
microseconds++;
}
// We dropped one second previously, put it back in now that we have handled the rounding.
microseconds -= 1'000'000;
}
if (!microseconds.has_overflow())
return microseconds.value();
return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
}
i64 Duration::to_seconds() const
{
VERIFY(m_nanoseconds < 1'000'000'000);
if (m_seconds >= 0 && m_nanoseconds) {
Checked<i64> seconds(m_seconds);
seconds++;
return seconds.has_overflow() ? 0x7fff'ffff'ffff'ffffLL : seconds.value();
}
return m_seconds;
}
i64 Duration::to_milliseconds() const
{
VERIFY(m_nanoseconds < 1'000'000'000);
Checked<i64> milliseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
milliseconds *= 1'000;
milliseconds += m_nanoseconds / 1'000'000;
if (m_seconds >= 0 && m_nanoseconds % 1'000'000 != 0)
milliseconds++;
if (m_seconds < 0) {
// We dropped one second previously, put it back in now that we have handled the rounding.
milliseconds -= 1'000;
}
if (!milliseconds.has_overflow())
return milliseconds.value();
return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
}
i64 Duration::to_microseconds() const
{
VERIFY(m_nanoseconds < 1'000'000'000);
Checked<i64> microseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
microseconds *= 1'000'000;
microseconds += m_nanoseconds / 1'000;
if (m_seconds >= 0 && m_nanoseconds % 1'000 != 0)
microseconds++;
if (m_seconds < 0) {
// We dropped one second previously, put it back in now that we have handled the rounding.
microseconds -= 1'000'000;
}
if (!microseconds.has_overflow())
return microseconds.value();
return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
}
i64 Duration::to_nanoseconds() const
{
VERIFY(m_nanoseconds < 1'000'000'000);
Checked<i64> nanoseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
nanoseconds *= 1'000'000'000;
nanoseconds += m_nanoseconds;
if (m_seconds < 0) {
// We dropped one second previously, put it back in now that we have handled the rounding.
nanoseconds -= 1'000'000'000;
}
if (!nanoseconds.has_overflow())
return nanoseconds.value();
return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
}
timespec Duration::to_timespec() const
{
VERIFY(m_nanoseconds < 1'000'000'000);
return { static_cast<time_t>(m_seconds), static_cast<long>(m_nanoseconds) };
}
timeval Duration::to_timeval() const
{
VERIFY(m_nanoseconds < 1'000'000'000);
// This is done because winsock defines tv_sec and tv_usec as long, and Linux64 as long int.
using sec_type = decltype(declval<timeval>().tv_sec);
using usec_type = decltype(declval<timeval>().tv_usec);
return { static_cast<sec_type>(m_seconds), static_cast<usec_type>(m_nanoseconds) / 1000 };
}
Duration Duration::from_half_sanitized(i64 seconds, i32 extra_seconds, u32 nanoseconds)
{
VERIFY(nanoseconds < 1'000'000'000);
if ((seconds <= 0 && extra_seconds > 0) || (seconds >= 0 && extra_seconds < 0)) {
// Opposite signs mean that we can definitely add them together without fear of overflowing i64:
seconds += extra_seconds;
extra_seconds = 0;
}
// Now the only possible way to become invalid is overflowing i64 towards positive infinity:
if (Checked<i64>::addition_would_overflow<i64, i64>(seconds, extra_seconds)) {
if (seconds < 0) {
return Duration::min();
} else {
return Duration::max();
}
}
return Duration { seconds + extra_seconds, nanoseconds };
}
#ifndef KERNEL
namespace {
static Duration now_time_from_clock(clockid_t clock_id)
{
timespec now_spec {};
::clock_gettime(clock_id, &now_spec);
return Duration::from_timespec(now_spec);
}
}
MonotonicTime MonotonicTime::now()
{
return MonotonicTime { now_time_from_clock(CLOCK_MONOTONIC) };
}
MonotonicTime MonotonicTime::now_coarse()
{
return MonotonicTime { now_time_from_clock(CLOCK_MONOTONIC_COARSE) };
}
UnixDateTime UnixDateTime::now()
{
return UnixDateTime { now_time_from_clock(CLOCK_REALTIME) };
}
UnixDateTime UnixDateTime::now_coarse()
{
return UnixDateTime { now_time_from_clock(CLOCK_REALTIME_COARSE) };
}
#endif
}
|