summaryrefslogtreecommitdiff
path: root/AK/Time.cpp
blob: bb01b1e907026c252873dfb6f951dcebfc4cedaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/*
 * Copyright (c) 2020, the SerenityOS developers.
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Checked.h>
#include <AK/Time.h>

// Make a reasonable guess as to which timespec/timeval definition to use.
// It doesn't really matter, since both are identical.
#ifdef KERNEL
#    include <Kernel/UnixTypes.h>
#else
#    include <sys/time.h>
#    include <time.h>
#endif

namespace AK {

int days_in_month(int year, unsigned month)
{
    VERIFY(month >= 1 && month <= 12);
    if (month == 2)
        return is_leap_year(year) ? 29 : 28;

    bool is_long_month = (month == 1 || month == 3 || month == 5 || month == 7 || month == 8 || month == 10 || month == 12);
    return is_long_month ? 31 : 30;
}

unsigned day_of_week(int year, unsigned month, int day)
{
    VERIFY(month >= 1 && month <= 12);
    constexpr Array seek_table = { 0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4 };
    if (month < 3)
        --year;

    return (year + year / 4 - year / 100 + year / 400 + seek_table[month - 1] + day) % 7;
}

Time Time::from_ticks(clock_t ticks, time_t ticks_per_second)
{
    auto secs = ticks % ticks_per_second;

    i32 nsecs = 1'000'000'000 * (ticks - (ticks_per_second * secs)) / ticks_per_second;
    i32 extra_secs = sane_mod(nsecs, 1'000'000'000);
    return Time::from_half_sanitized(secs, extra_secs, nsecs);
}

Time Time::from_timespec(const struct timespec& ts)
{
    i32 nsecs = ts.tv_nsec;
    i32 extra_secs = sane_mod(nsecs, 1'000'000'000);
    return Time::from_half_sanitized(ts.tv_sec, extra_secs, nsecs);
}

Time Time::from_timeval(const struct timeval& tv)
{
    i32 usecs = tv.tv_usec;
    i32 extra_secs = sane_mod(usecs, 1'000'000);
    VERIFY(0 <= usecs && usecs < 1'000'000);
    return Time::from_half_sanitized(tv.tv_sec, extra_secs, usecs * 1'000);
}

i64 Time::to_truncated_seconds() const
{
    VERIFY(m_nanoseconds < 1'000'000'000);
    if (m_seconds < 0 && m_nanoseconds) {
        // Since m_seconds is negative, adding 1 can't possibly overflow
        return m_seconds + 1;
    }
    return m_seconds;
}

i64 Time::to_truncated_milliseconds() const
{
    VERIFY(m_nanoseconds < 1'000'000'000);
    Checked<i64> milliseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
    milliseconds *= 1'000;
    milliseconds += m_nanoseconds / 1'000'000;
    if (m_seconds < 0) {
        if (m_nanoseconds % 1'000'000 != 0) {
            // Does not overflow: milliseconds <= 1'999.
            milliseconds++;
        }
        // We dropped one second previously, put it back in now that we have handled the rounding.
        milliseconds -= 1'000;
    }
    if (!milliseconds.has_overflow())
        return milliseconds.value();
    return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
}

i64 Time::to_truncated_microseconds() const
{
    VERIFY(m_nanoseconds < 1'000'000'000);
    Checked<i64> microseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
    microseconds *= 1'000'000;
    microseconds += m_nanoseconds / 1'000;
    if (m_seconds < 0) {
        if (m_nanoseconds % 1'000 != 0) {
            // Does not overflow: microseconds <= 1'999'999.
            microseconds++;
        }
        // We dropped one second previously, put it back in now that we have handled the rounding.
        microseconds -= 1'000'000;
    }
    if (!microseconds.has_overflow())
        return microseconds.value();
    return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
}

i64 Time::to_seconds() const
{
    VERIFY(m_nanoseconds < 1'000'000'000);
    if (m_seconds >= 0 && m_nanoseconds) {
        Checked<i64> seconds(m_seconds);
        seconds++;
        return seconds.has_overflow() ? 0x7fff'ffff'ffff'ffffLL : seconds.value();
    }
    return m_seconds;
}

i64 Time::to_milliseconds() const
{
    VERIFY(m_nanoseconds < 1'000'000'000);
    Checked<i64> milliseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
    milliseconds *= 1'000;
    milliseconds += m_nanoseconds / 1'000'000;
    if (m_seconds >= 0 && m_nanoseconds % 1'000'000 != 0)
        milliseconds++;
    if (m_seconds < 0) {
        // We dropped one second previously, put it back in now that we have handled the rounding.
        milliseconds -= 1'000;
    }
    if (!milliseconds.has_overflow())
        return milliseconds.value();
    return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
}

i64 Time::to_microseconds() const
{
    VERIFY(m_nanoseconds < 1'000'000'000);
    Checked<i64> microseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
    microseconds *= 1'000'000;
    microseconds += m_nanoseconds / 1'000;
    if (m_seconds >= 0 && m_nanoseconds % 1'000 != 0)
        microseconds++;
    if (m_seconds < 0) {
        // We dropped one second previously, put it back in now that we have handled the rounding.
        microseconds -= 1'000'000;
    }
    if (!microseconds.has_overflow())
        return microseconds.value();
    return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
}

i64 Time::to_nanoseconds() const
{
    VERIFY(m_nanoseconds < 1'000'000'000);
    Checked<i64> nanoseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
    nanoseconds *= 1'000'000'000;
    nanoseconds += m_nanoseconds;
    if (m_seconds < 0) {
        // We dropped one second previously, put it back in now that we have handled the rounding.
        nanoseconds -= 1'000'000'000;
    }
    if (!nanoseconds.has_overflow())
        return nanoseconds.value();
    return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
}

timespec Time::to_timespec() const
{
    VERIFY(m_nanoseconds < 1'000'000'000);
    return { static_cast<time_t>(m_seconds), static_cast<long>(m_nanoseconds) };
}

timeval Time::to_timeval() const
{
    VERIFY(m_nanoseconds < 1'000'000'000);
    return { static_cast<time_t>(m_seconds), static_cast<suseconds_t>(m_nanoseconds) / 1000 };
}

Time Time::operator+(Time const& other) const
{
    VERIFY(m_nanoseconds < 1'000'000'000);
    VERIFY(other.m_nanoseconds < 1'000'000'000);

    u32 new_nsecs = m_nanoseconds + other.m_nanoseconds;
    u32 extra_secs = new_nsecs / 1'000'000'000;
    new_nsecs %= 1'000'000'000;

    i64 this_secs = m_seconds;
    i64 other_secs = other.m_seconds;
    // We would like to just add "this_secs + other_secs + extra_secs".
    // However, computing this naively may overflow even though the result is in-bounds.
    // Example in 8-bit: (-127) + (-2) + (+1) = (-128), which fits in an i8.
    // Example in 8-bit, the other way around: (-2) + (127) + (+1) = 126.
    // So we do something more sophisticated:
    if (extra_secs) {
        VERIFY(extra_secs == 1);
        if (this_secs != 0x7fff'ffff'ffff'ffff) {
            this_secs += 1;
        } else if (other_secs != 0x7fff'ffff'ffff'ffff) {
            other_secs += 1;
        } else {
            /* If *both* are INT64_MAX, then adding them will overflow in any case. */
            return Time::max();
        }
    }

    Checked<i64> new_secs { this_secs };
    new_secs += other_secs;
    if (new_secs.has_overflow()) {
        if (other_secs > 0)
            return Time::max();
        else
            return Time::min();
    }

    return Time { new_secs.value(), new_nsecs };
}

Time& Time::operator+=(Time const& other)
{
    *this = *this + other;
    return *this;
}

Time Time::operator-(Time const& other) const
{
    VERIFY(m_nanoseconds < 1'000'000'000);
    VERIFY(other.m_nanoseconds < 1'000'000'000);

    if (other.m_nanoseconds)
        return *this + Time((i64) ~(u64)other.m_seconds, 1'000'000'000 - other.m_nanoseconds);

    if (other.m_seconds != (i64)-0x8000'0000'0000'0000)
        return *this + Time(-other.m_seconds, 0);

    // Only remaining case: We want to subtract -0x8000'0000'0000'0000 seconds,
    // i.e. add a very large number.

    if (m_seconds >= 0)
        return Time::max();
    return Time { (m_seconds + 0x4000'0000'0000'0000) + 0x4000'0000'0000'0000, m_nanoseconds };
}

Time& Time::operator-=(Time const& other)
{
    *this = *this - other;
    return *this;
}

bool Time::operator<(Time const& other) const
{
    return m_seconds < other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds < other.m_nanoseconds);
}

bool Time::operator<=(Time const& other) const
{
    return m_seconds < other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds <= other.m_nanoseconds);
}

bool Time::operator>(Time const& other) const
{
    return m_seconds > other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds > other.m_nanoseconds);
}

bool Time::operator>=(Time const& other) const
{
    return m_seconds > other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds >= other.m_nanoseconds);
}

Time Time::from_half_sanitized(i64 seconds, i32 extra_seconds, u32 nanoseconds)
{
    VERIFY(nanoseconds < 1'000'000'000);

    if ((seconds <= 0 && extra_seconds > 0) || (seconds >= 0 && extra_seconds < 0)) {
        // Opposite signs mean that we can definitely add them together without fear of overflowing i64:
        seconds += extra_seconds;
        extra_seconds = 0;
    }

    // Now the only possible way to become invalid is overflowing i64 towards positive infinity:
    if (Checked<i64>::addition_would_overflow<i64, i64>(seconds, extra_seconds)) {
        if (seconds < 0) {
            return Time::min();
        } else {
            return Time::max();
        }
    }

    return Time { seconds + extra_seconds, nanoseconds };
}

#ifndef KERNEL
namespace {
static Time now_time_from_clock(clockid_t clock_id)
{
    timespec now_spec {};
    ::clock_gettime(clock_id, &now_spec);
    return Time::from_timespec(now_spec);
}
}

Time Time::now_realtime()
{
    return now_time_from_clock(CLOCK_REALTIME);
}

Time Time::now_realtime_coarse()
{
    return now_time_from_clock(CLOCK_REALTIME_COARSE);
}

Time Time::now_monotonic()
{
    return now_time_from_clock(CLOCK_MONOTONIC);
}

Time Time::now_monotonic_coarse()
{
    return now_time_from_clock(CLOCK_MONOTONIC_COARSE);
}

#endif

}