1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/Error.h>
#include <AK/Find.h>
#include <AK/StdLibExtras.h>
#include <AK/Traits.h>
#include <AK/Types.h>
namespace AK {
template<typename ListType, typename ElementType>
class SinglyLinkedListIterator {
public:
SinglyLinkedListIterator() = default;
bool operator!=(SinglyLinkedListIterator const& other) const { return m_node != other.m_node; }
SinglyLinkedListIterator& operator++()
{
if (m_removed)
m_removed = false;
else
m_prev = m_node;
m_node = m_next;
if (m_next)
m_next = m_next->next;
return *this;
}
ElementType& operator*()
{
VERIFY(!m_removed);
return m_node->value;
}
ElementType* operator->()
{
VERIFY(!m_removed);
return &m_node->value;
}
bool is_end() const { return !m_node; }
bool is_begin() const { return !m_prev; }
void remove(ListType& list)
{
m_removed = true;
list.remove(*this);
};
private:
friend ListType;
explicit SinglyLinkedListIterator(typename ListType::Node* node, typename ListType::Node* prev = nullptr)
: m_node(node)
, m_prev(prev)
, m_next(node ? node->next : nullptr)
{
}
typename ListType::Node* m_node { nullptr };
typename ListType::Node* m_prev { nullptr };
typename ListType::Node* m_next { nullptr };
bool m_removed { false };
};
template<typename T>
class SinglyLinkedList {
private:
struct Node {
explicit Node(T&& v)
: value(move(v))
{
}
explicit Node(T const& v)
: value(v)
{
}
T value;
Node* next { nullptr };
};
public:
SinglyLinkedList() = default;
SinglyLinkedList(SinglyLinkedList const& other) = delete;
SinglyLinkedList(SinglyLinkedList&& other)
: m_head(other.m_head)
, m_tail(other.m_tail)
{
other.m_head = nullptr;
other.m_tail = nullptr;
}
SinglyLinkedList& operator=(SinglyLinkedList const& other) = delete;
SinglyLinkedList& operator=(SinglyLinkedList&&) = delete;
~SinglyLinkedList() { clear(); }
bool is_empty() const { return !head(); }
inline size_t size_slow() const
{
size_t size = 0;
for (auto* node = m_head; node; node = node->next)
++size;
return size;
}
void clear()
{
for (auto* node = m_head; node;) {
auto* next = node->next;
delete node;
node = next;
}
m_head = nullptr;
m_tail = nullptr;
}
T& first()
{
VERIFY(head());
return head()->value;
}
T const& first() const
{
VERIFY(head());
return head()->value;
}
T& last()
{
VERIFY(head());
return tail()->value;
}
T const& last() const
{
VERIFY(head());
return tail()->value;
}
T take_first()
{
VERIFY(m_head);
auto* prev_head = m_head;
T value = move(first());
if (m_tail == m_head)
m_tail = nullptr;
m_head = m_head->next;
delete prev_head;
return value;
}
template<typename U = T>
ErrorOr<void> try_append(U&& value)
{
auto* node = new (nothrow) Node(forward<U>(value));
if (!node)
return Error::from_errno(ENOMEM);
if (!m_head) {
m_head = node;
m_tail = node;
return {};
}
m_tail->next = node;
m_tail = node;
return {};
}
template<typename U = T>
ErrorOr<void> try_prepend(U&& value)
{
auto* node = new (nothrow) Node(forward<U>(value));
if (!node)
return Error::from_errno(ENOMEM);
if (!m_head) {
m_head = node;
m_tail = node;
return {};
}
node->next = m_head;
m_head = node;
return {};
}
#ifndef KERNEL
template<typename U = T>
void append(U&& value)
{
MUST(try_append(forward<U>(value)));
}
template<typename U = T>
void prepend(U&& value)
{
MUST(try_prepend(forward<U>(value)));
}
#endif
bool contains_slow(T const& value) const
{
return find(value) != end();
}
using Iterator = SinglyLinkedListIterator<SinglyLinkedList, T>;
friend Iterator;
Iterator begin() { return Iterator(m_head); }
Iterator end() { return {}; }
using ConstIterator = SinglyLinkedListIterator<const SinglyLinkedList, T const>;
friend ConstIterator;
ConstIterator begin() const { return ConstIterator(m_head); }
ConstIterator end() const { return {}; }
template<typename TUnaryPredicate>
ConstIterator find_if(TUnaryPredicate&& pred) const
{
return AK::find_if(begin(), end(), forward<TUnaryPredicate>(pred));
}
template<typename TUnaryPredicate>
Iterator find_if(TUnaryPredicate&& pred)
{
return AK::find_if(begin(), end(), forward<TUnaryPredicate>(pred));
}
ConstIterator find(T const& value) const
{
return find_if([&](auto& other) { return Traits<T>::equals(value, other); });
}
Iterator find(T const& value)
{
return find_if([&](auto& other) { return Traits<T>::equals(value, other); });
}
template<typename U = T>
ErrorOr<void> try_insert_before(Iterator iterator, U&& value)
{
auto* node = new (nothrow) Node(forward<U>(value));
if (!node)
return Error::from_errno(ENOMEM);
node->next = iterator.m_node;
if (m_head == iterator.m_node)
m_head = node;
if (iterator.m_prev)
iterator.m_prev->next = node;
return {};
}
template<typename U = T>
ErrorOr<void> try_insert_after(Iterator iterator, U&& value)
{
if (iterator.is_end())
return try_append(value);
auto* node = new (nothrow) Node(forward<U>(value));
if (!node)
return Error::from_errno(ENOMEM);
node->next = iterator.m_node->next;
iterator.m_node->next = node;
if (m_tail == iterator.m_node)
m_tail = node;
return {};
}
#ifndef KERNEL
template<typename U = T>
void insert_before(Iterator iterator, U&& value)
{
MUST(try_insert_before(iterator, forward<U>(value)));
}
template<typename U = T>
void insert_after(Iterator iterator, U&& value)
{
MUST(try_insert_after(iterator, forward<U>(value)));
}
#endif
void remove(Iterator& iterator)
{
VERIFY(!iterator.is_end());
if (m_head == iterator.m_node)
m_head = iterator.m_node->next;
if (m_tail == iterator.m_node)
m_tail = iterator.m_prev;
if (iterator.m_prev)
iterator.m_prev->next = iterator.m_node->next;
delete iterator.m_node;
}
private:
Node* head() { return m_head; }
Node const* head() const { return m_head; }
Node* tail() { return m_tail; }
Node const* tail() const { return m_tail; }
Node* m_head { nullptr };
Node* m_tail { nullptr };
};
}
#if USING_AK_GLOBALLY
using AK::SinglyLinkedList;
#endif
|