1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Atomic.h>
#include <AK/Format.h>
#include <AK/NonnullRefPtr.h>
#include <AK/StdLibExtras.h>
#include <AK/Traits.h>
#include <AK/Types.h>
#ifdef KERNEL
# include <Kernel/Arch/x86/CPU.h>
#endif
namespace AK {
template<typename T>
class OwnPtr;
template<typename T>
struct RefPtrTraits {
ALWAYS_INLINE static T* as_ptr(FlatPtr bits)
{
return (T*)(bits & ~(FlatPtr)1);
}
ALWAYS_INLINE static FlatPtr as_bits(T* ptr)
{
VERIFY(!((FlatPtr)ptr & 1));
return (FlatPtr)ptr;
}
template<typename U, typename PtrTraits>
ALWAYS_INLINE static FlatPtr convert_from(FlatPtr bits)
{
if (PtrTraits::is_null(bits))
return default_null_value;
return as_bits(PtrTraits::as_ptr(bits));
}
ALWAYS_INLINE static bool is_null(FlatPtr bits)
{
return !(bits & ~(FlatPtr)1);
}
ALWAYS_INLINE static FlatPtr exchange(Atomic<FlatPtr>& atomic_var, FlatPtr new_value)
{
// Only exchange when lock is not held
VERIFY(!(new_value & 1));
FlatPtr expected = atomic_var.load(AK::MemoryOrder::memory_order_relaxed);
for (;;) {
expected &= ~(FlatPtr)1; // only if lock bit is not set
if (atomic_var.compare_exchange_strong(expected, new_value, AK::MemoryOrder::memory_order_acq_rel))
break;
#ifdef KERNEL
Kernel::Processor::wait_check();
#endif
}
return expected;
}
ALWAYS_INLINE static bool exchange_if_null(Atomic<FlatPtr>& atomic_var, FlatPtr new_value)
{
// Only exchange when lock is not held
VERIFY(!(new_value & 1));
for (;;) {
FlatPtr expected = default_null_value; // only if lock bit is not set
if (atomic_var.compare_exchange_strong(expected, new_value, AK::MemoryOrder::memory_order_acq_rel))
break;
if (!is_null(expected))
return false;
#ifdef KERNEL
Kernel::Processor::wait_check();
#endif
}
return true;
}
ALWAYS_INLINE static FlatPtr lock(Atomic<FlatPtr>& atomic_var)
{
// This sets the lock bit atomically, preventing further modifications.
// This is important when e.g. copying a RefPtr where the source
// might be released and freed too quickly. This allows us
// to temporarily lock the pointer so we can add a reference, then
// unlock it
FlatPtr bits;
for (;;) {
bits = atomic_var.fetch_or(1, AK::MemoryOrder::memory_order_acq_rel);
if (!(bits & 1))
break;
#ifdef KERNEL
Kernel::Processor::wait_check();
#endif
}
VERIFY(!(bits & 1));
return bits;
}
ALWAYS_INLINE static void unlock(Atomic<FlatPtr>& atomic_var, FlatPtr new_value)
{
VERIFY(!(new_value & 1));
atomic_var.store(new_value, AK::MemoryOrder::memory_order_release);
}
static constexpr FlatPtr default_null_value = 0;
using NullType = std::nullptr_t;
};
template<typename T, typename PtrTraits>
class RefPtr {
template<typename U, typename P>
friend class RefPtr;
template<typename U>
friend class WeakPtr;
public:
enum AdoptTag {
Adopt
};
RefPtr() = default;
RefPtr(const T* ptr)
: m_bits(PtrTraits::as_bits(const_cast<T*>(ptr)))
{
ref_if_not_null(const_cast<T*>(ptr));
}
RefPtr(const T& object)
: m_bits(PtrTraits::as_bits(const_cast<T*>(&object)))
{
T* ptr = const_cast<T*>(&object);
VERIFY(ptr);
VERIFY(!is_null());
ptr->ref();
}
RefPtr(AdoptTag, T& object)
: m_bits(PtrTraits::as_bits(&object))
{
VERIFY(!is_null());
}
RefPtr(RefPtr&& other)
: m_bits(other.leak_ref_raw())
{
}
ALWAYS_INLINE RefPtr(const NonnullRefPtr<T>& other)
: m_bits(PtrTraits::as_bits(const_cast<T*>(other.add_ref())))
{
}
template<typename U>
ALWAYS_INLINE RefPtr(const NonnullRefPtr<U>& other)
: m_bits(PtrTraits::as_bits(const_cast<U*>(other.add_ref())))
{
}
template<typename U>
ALWAYS_INLINE RefPtr(NonnullRefPtr<U>&& other)
: m_bits(PtrTraits::as_bits(&other.leak_ref()))
{
VERIFY(!is_null());
}
template<typename U, typename P = RefPtrTraits<U>>
RefPtr(RefPtr<U, P>&& other)
: m_bits(PtrTraits::template convert_from<U, P>(other.leak_ref_raw()))
{
}
RefPtr(const RefPtr& other)
: m_bits(other.add_ref_raw())
{
}
template<typename U, typename P = RefPtrTraits<U>>
RefPtr(const RefPtr<U, P>& other)
: m_bits(other.add_ref_raw())
{
}
ALWAYS_INLINE ~RefPtr()
{
clear();
#ifdef SANITIZE_PTRS
if constexpr (sizeof(T*) == 8)
m_bits.store(0xe0e0e0e0e0e0e0e0, AK::MemoryOrder::memory_order_relaxed);
else
m_bits.store(0xe0e0e0e0, AK::MemoryOrder::memory_order_relaxed);
#endif
}
template<typename U>
RefPtr(const OwnPtr<U>&) = delete;
template<typename U>
RefPtr& operator=(const OwnPtr<U>&) = delete;
void swap(RefPtr& other)
{
if (this == &other)
return;
// NOTE: swap is not atomic!
FlatPtr other_bits = PtrTraits::exchange(other.m_bits, PtrTraits::default_null_value);
FlatPtr bits = PtrTraits::exchange(m_bits, other_bits);
PtrTraits::exchange(other.m_bits, bits);
}
template<typename U, typename P = RefPtrTraits<U>>
void swap(RefPtr<U, P>& other)
{
// NOTE: swap is not atomic!
FlatPtr other_bits = P::exchange(other.m_bits, P::default_null_value);
FlatPtr bits = PtrTraits::exchange(m_bits, PtrTraits::template convert_from<U, P>(other_bits));
P::exchange(other.m_bits, P::template convert_from<U, P>(bits));
}
ALWAYS_INLINE RefPtr& operator=(RefPtr&& other)
{
if (this != &other)
assign_raw(other.leak_ref_raw());
return *this;
}
template<typename U, typename P = RefPtrTraits<U>>
ALWAYS_INLINE RefPtr& operator=(RefPtr<U, P>&& other)
{
assign_raw(PtrTraits::template convert_from<U, P>(other.leak_ref_raw()));
return *this;
}
template<typename U>
ALWAYS_INLINE RefPtr& operator=(NonnullRefPtr<U>&& other)
{
assign_raw(PtrTraits::as_bits(&other.leak_ref()));
return *this;
}
ALWAYS_INLINE RefPtr& operator=(const NonnullRefPtr<T>& other)
{
assign_raw(PtrTraits::as_bits(other.add_ref()));
return *this;
}
template<typename U>
ALWAYS_INLINE RefPtr& operator=(const NonnullRefPtr<U>& other)
{
assign_raw(PtrTraits::as_bits(other.add_ref()));
return *this;
}
ALWAYS_INLINE RefPtr& operator=(const RefPtr& other)
{
if (this != &other)
assign_raw(other.add_ref_raw());
return *this;
}
template<typename U>
ALWAYS_INLINE RefPtr& operator=(const RefPtr<U>& other)
{
assign_raw(other.add_ref_raw());
return *this;
}
ALWAYS_INLINE RefPtr& operator=(const T* ptr)
{
ref_if_not_null(const_cast<T*>(ptr));
assign_raw(PtrTraits::as_bits(const_cast<T*>(ptr)));
return *this;
}
ALWAYS_INLINE RefPtr& operator=(const T& object)
{
const_cast<T&>(object).ref();
assign_raw(PtrTraits::as_bits(const_cast<T*>(&object)));
return *this;
}
RefPtr& operator=(std::nullptr_t)
{
clear();
return *this;
}
ALWAYS_INLINE bool assign_if_null(RefPtr&& other)
{
if (this == &other)
return is_null();
return PtrTraits::exchange_if_null(m_bits, other.leak_ref_raw());
}
template<typename U, typename P = RefPtrTraits<U>>
ALWAYS_INLINE bool assign_if_null(RefPtr<U, P>&& other)
{
if (this == &other)
return is_null();
return PtrTraits::exchange_if_null(m_bits, PtrTraits::template convert_from<U, P>(other.leak_ref_raw()));
}
ALWAYS_INLINE void clear()
{
assign_raw(PtrTraits::default_null_value);
}
bool operator!() const { return PtrTraits::is_null(m_bits.load(AK::MemoryOrder::memory_order_relaxed)); }
[[nodiscard]] T* leak_ref()
{
FlatPtr bits = PtrTraits::exchange(m_bits, PtrTraits::default_null_value);
return PtrTraits::as_ptr(bits);
}
NonnullRefPtr<T> release_nonnull()
{
FlatPtr bits = PtrTraits::exchange(m_bits, PtrTraits::default_null_value);
VERIFY(!PtrTraits::is_null(bits));
return NonnullRefPtr<T>(NonnullRefPtr<T>::Adopt, *PtrTraits::as_ptr(bits));
}
ALWAYS_INLINE T* ptr() { return as_ptr(); }
ALWAYS_INLINE const T* ptr() const { return as_ptr(); }
ALWAYS_INLINE T* operator->()
{
return as_nonnull_ptr();
}
ALWAYS_INLINE const T* operator->() const
{
return as_nonnull_ptr();
}
ALWAYS_INLINE T& operator*()
{
return *as_nonnull_ptr();
}
ALWAYS_INLINE const T& operator*() const
{
return *as_nonnull_ptr();
}
ALWAYS_INLINE operator const T*() const { return as_ptr(); }
ALWAYS_INLINE operator T*() { return as_ptr(); }
ALWAYS_INLINE operator bool() { return !is_null(); }
bool operator==(std::nullptr_t) const { return is_null(); }
bool operator!=(std::nullptr_t) const { return !is_null(); }
bool operator==(const RefPtr& other) const { return as_ptr() == other.as_ptr(); }
bool operator!=(const RefPtr& other) const { return as_ptr() != other.as_ptr(); }
bool operator==(RefPtr& other) { return as_ptr() == other.as_ptr(); }
bool operator!=(RefPtr& other) { return as_ptr() != other.as_ptr(); }
bool operator==(const T* other) const { return as_ptr() == other; }
bool operator!=(const T* other) const { return as_ptr() != other; }
bool operator==(T* other) { return as_ptr() == other; }
bool operator!=(T* other) { return as_ptr() != other; }
ALWAYS_INLINE bool is_null() const { return PtrTraits::is_null(m_bits.load(AK::MemoryOrder::memory_order_relaxed)); }
template<typename U = T, typename EnableIf<IsSame<U, T> && !IsNullPointer<typename PtrTraits::NullType>>::Type* = nullptr>
typename PtrTraits::NullType null_value() const
{
// make sure we are holding a null value
FlatPtr bits = m_bits.load(AK::MemoryOrder::memory_order_relaxed);
VERIFY(PtrTraits::is_null(bits));
return PtrTraits::to_null_value(bits);
}
template<typename U = T, typename EnableIf<IsSame<U, T> && !IsNullPointer<typename PtrTraits::NullType>>::Type* = nullptr>
void set_null_value(typename PtrTraits::NullType value)
{
// make sure that new null value would be interpreted as a null value
FlatPtr bits = PtrTraits::from_null_value(value);
VERIFY(PtrTraits::is_null(bits));
assign_raw(bits);
}
private:
template<typename F>
void do_while_locked(F f) const
{
#ifdef KERNEL
// We don't want to be pre-empted while we have the lock bit set
Kernel::ScopedCritical critical;
#endif
FlatPtr bits = PtrTraits::lock(m_bits);
T* ptr = PtrTraits::as_ptr(bits);
f(ptr);
PtrTraits::unlock(m_bits, bits);
}
[[nodiscard]] ALWAYS_INLINE FlatPtr leak_ref_raw()
{
return PtrTraits::exchange(m_bits, PtrTraits::default_null_value);
}
[[nodiscard]] ALWAYS_INLINE FlatPtr add_ref_raw() const
{
#ifdef KERNEL
// We don't want to be pre-empted while we have the lock bit set
Kernel::ScopedCritical critical;
#endif
// This prevents a race condition between thread A and B:
// 1. Thread A copies RefPtr, e.g. through assignment or copy constructor,
// gets the pointer from source, but is pre-empted before adding
// another reference
// 2. Thread B calls clear, leak_ref, or release_nonnull on source, and
// then drops the last reference, causing the object to be deleted
// 3. Thread A finishes step #1 by attempting to add a reference to
// the object that was already deleted in step #2
FlatPtr bits = PtrTraits::lock(m_bits);
if (T* ptr = PtrTraits::as_ptr(bits))
ptr->ref();
PtrTraits::unlock(m_bits, bits);
return bits;
}
ALWAYS_INLINE void assign_raw(FlatPtr bits)
{
FlatPtr prev_bits = PtrTraits::exchange(m_bits, bits);
unref_if_not_null(PtrTraits::as_ptr(prev_bits));
}
ALWAYS_INLINE T* as_ptr() const
{
return PtrTraits::as_ptr(m_bits.load(AK::MemoryOrder::memory_order_relaxed));
}
ALWAYS_INLINE T* as_nonnull_ptr() const
{
return as_nonnull_ptr(m_bits.load(AK::MemoryOrder::memory_order_relaxed));
}
ALWAYS_INLINE T* as_nonnull_ptr(FlatPtr bits) const
{
VERIFY(!PtrTraits::is_null(bits));
return PtrTraits::as_ptr(bits);
}
mutable Atomic<FlatPtr> m_bits { PtrTraits::default_null_value };
};
template<typename T>
struct Formatter<RefPtr<T>> : Formatter<const T*> {
void format(FormatBuilder& builder, const RefPtr<T>& value)
{
Formatter<const T*>::format(builder, value.ptr());
}
};
template<typename T>
struct Traits<RefPtr<T>> : public GenericTraits<RefPtr<T>> {
using PeekType = const T*;
static unsigned hash(const RefPtr<T>& p) { return ptr_hash(p.ptr()); }
static bool equals(const RefPtr<T>& a, const RefPtr<T>& b) { return a.ptr() == b.ptr(); }
};
template<typename T, typename U>
inline NonnullRefPtr<T> static_ptr_cast(const NonnullRefPtr<U>& ptr)
{
return NonnullRefPtr<T>(static_cast<const T&>(*ptr));
}
template<typename T, typename U, typename PtrTraits = RefPtrTraits<T>>
inline RefPtr<T> static_ptr_cast(const RefPtr<U>& ptr)
{
return RefPtr<T, PtrTraits>(static_cast<const T*>(ptr.ptr()));
}
template<typename T, typename PtrTraitsT, typename U, typename PtrTraitsU>
inline void swap(RefPtr<T, PtrTraitsT>& a, RefPtr<U, PtrTraitsU>& b)
{
a.swap(b);
}
}
using AK::RefPtr;
using AK::static_ptr_cast;
|