summaryrefslogtreecommitdiff
path: root/AK/QuickSort.h
blob: 8d026a5933648ed8f43f761b6cd047df96a49ebd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 * Copyright (c) 2022, Marc Luqué <marc.luque@outlook.com>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/InsertionSort.h>
#include <AK/StdLibExtras.h>

namespace AK {

// This is a dual pivot quick sort. It is quite a bit faster than the single
// pivot quick_sort below. The other quick_sort below should only be used when
// you are stuck with simple iterators to a container and you don't have access
// to the container itself.
//
// We use a cutoff to insertion sort for partitions of size 7 or smaller.
// The idea is to avoid recursion for small partitions.
// The value 7 here is a magic number. According to princeton's CS algorithm class
// a value between 5 and 15 should work well in most situations:
// https://algs4.cs.princeton.edu/23quicksort/

static constexpr int INSERTION_SORT_CUTOFF = 7;

template<typename Collection, typename LessThan>
void dual_pivot_quick_sort(Collection& col, int start, int end, LessThan less_than)
{
    if ((end + 1) - start <= INSERTION_SORT_CUTOFF) {
        AK::insertion_sort(col, start, end, less_than);
        return;
    }

    while (start < end) {
        int size = end - start + 1;
        if (size > 3) {
            int third = size / 3;
            if (less_than(col[start + third], col[end - third])) {
                swap(col[start + third], col[start]);
                swap(col[end - third], col[end]);
            } else {
                swap(col[start + third], col[end]);
                swap(col[end - third], col[start]);
            }
        } else {
            if (!less_than(col[start], col[end])) {
                swap(col[start], col[end]);
            }
        }

        int j = start + 1;
        int k = start + 1;
        int g = end - 1;

        auto&& left_pivot = col[start];
        auto&& right_pivot = col[end];

        while (k <= g) {
            if (less_than(col[k], left_pivot)) {
                swap(col[k], col[j]);
                j++;
            } else if (!less_than(col[k], right_pivot)) {
                while (!less_than(col[g], right_pivot) && k < g) {
                    g--;
                }
                swap(col[k], col[g]);
                g--;
                if (less_than(col[k], left_pivot)) {
                    swap(col[k], col[j]);
                    j++;
                }
            }
            k++;
        }
        j--;
        g++;

        swap(col[start], col[j]);
        swap(col[end], col[g]);

        int left_pointer = j;
        int right_pointer = g;

        int left_size = left_pointer - start;
        int middle_size = right_pointer - (left_pointer + 1);
        int right_size = (end + 1) - (right_pointer + 1);

        if (left_size >= middle_size && left_size >= right_size) {
            dual_pivot_quick_sort(col, left_pointer + 1, right_pointer - 1, less_than);
            dual_pivot_quick_sort(col, right_pointer + 1, end, less_than);
            end = left_pointer - 1;
        } else if (middle_size >= right_size) {
            dual_pivot_quick_sort(col, start, left_pointer - 1, less_than);
            dual_pivot_quick_sort(col, right_pointer + 1, end, less_than);
            start = left_pointer + 1;
            end = right_pointer - 1;
        } else {
            dual_pivot_quick_sort(col, start, left_pointer - 1, less_than);
            dual_pivot_quick_sort(col, left_pointer + 1, right_pointer - 1, less_than);
            start = right_pointer + 1;
        }
    }
}

template<typename Iterator, typename LessThan>
void single_pivot_quick_sort(Iterator start, Iterator end, LessThan less_than)
{
    for (;;) {
        int size = end - start;
        if (size <= 1)
            return;

        int pivot_point = size / 2;
        if (pivot_point)
            swap(*(start + pivot_point), *start);

        auto&& pivot = *start;

        int i = 1;
        for (int j = 1; j < size; ++j) {
            if (less_than(*(start + j), pivot)) {
                swap(*(start + j), *(start + i));
                ++i;
            }
        }

        swap(*start, *(start + i - 1));
        // Recur into the shorter part of the remaining data
        // to ensure a stack depth of at most log(n).
        if (i > size / 2) {
            single_pivot_quick_sort(start + i, end, less_than);
            end = start + i - 1;
        } else {
            single_pivot_quick_sort(start, start + i - 1, less_than);
            start = start + i;
        }
    }
}

template<typename Iterator>
void quick_sort(Iterator start, Iterator end)
{
    single_pivot_quick_sort(start, end, [](auto& a, auto& b) { return a < b; });
}

template<typename Iterator, typename LessThan>
void quick_sort(Iterator start, Iterator end, LessThan less_than)
{
    single_pivot_quick_sort(start, end, move(less_than));
}

template<typename Collection, typename LessThan>
void quick_sort(Collection& collection, LessThan less_than)
{
    dual_pivot_quick_sort(collection, 0, collection.size() - 1, move(less_than));
}

template<typename Collection>
void quick_sort(Collection& collection)
{
    dual_pivot_quick_sort(collection, 0, collection.size() - 1,
        [](auto& a, auto& b) { return a < b; });
}

}

#if USING_AK_GLOBALLY
using AK::quick_sort;
#endif