summaryrefslogtreecommitdiff
path: root/AK/MemoryStream.h
blob: cd18d5dca46e7287d65b2e2b03db03f43194a6c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/*
 * Copyright (c) 2020, the SerenityOS developers.
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/ByteBuffer.h>
#include <AK/LEB128.h>
#include <AK/MemMem.h>
#include <AK/Stream.h>
#include <AK/Vector.h>

namespace AK {

class InputMemoryStream final : public InputStream {
public:
    explicit InputMemoryStream(ReadonlyBytes bytes)
        : m_bytes(bytes)
    {
    }

    bool unreliable_eof() const override { return eof(); }
    bool eof() const { return m_offset >= m_bytes.size(); }

    size_t read(Bytes bytes) override
    {
        if (has_any_error())
            return 0;

        const auto count = min(bytes.size(), remaining());
        __builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, count);
        m_offset += count;
        return count;
    }

    bool read_or_error(Bytes bytes) override
    {
        if (remaining() < bytes.size()) {
            set_recoverable_error();
            return false;
        }

        __builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, bytes.size());
        m_offset += bytes.size();
        return true;
    }

    bool discard_or_error(size_t count) override
    {
        if (remaining() < count) {
            set_recoverable_error();
            return false;
        }

        m_offset += count;
        return true;
    }

    void seek(size_t offset)
    {
        VERIFY(offset < m_bytes.size());
        m_offset = offset;
    }

    u8 peek_or_error() const
    {
        if (remaining() == 0) {
            set_recoverable_error();
            return 0;
        }

        return m_bytes[m_offset];
    }

    template<typename ValueType>
    bool read_LEB128_unsigned(ValueType& result) { return LEB128::read_unsigned(*this, result); }

    template<typename ValueType>
    bool read_LEB128_signed(ValueType& result) { return LEB128::read_signed(*this, result); }

    ReadonlyBytes bytes() const { return m_bytes; }
    size_t offset() const { return m_offset; }
    size_t remaining() const { return m_bytes.size() - m_offset; }

private:
    ReadonlyBytes m_bytes;
    size_t m_offset { 0 };
};

class OutputMemoryStream final : public OutputStream {
public:
    explicit OutputMemoryStream(Bytes bytes)
        : m_bytes(bytes)
    {
    }

    size_t write(ReadonlyBytes bytes) override
    {
        const auto nwritten = bytes.copy_trimmed_to(m_bytes.slice(m_offset));
        m_offset += nwritten;
        return nwritten;
    }

    bool write_or_error(ReadonlyBytes bytes) override
    {
        if (remaining() < bytes.size()) {
            set_recoverable_error();
            return false;
        }

        write(bytes);
        return true;
    }

    size_t fill_to_end(u8 value)
    {
        const auto nwritten = m_bytes.slice(m_offset).fill(value);
        m_offset += nwritten;
        return nwritten;
    }

    bool is_end() const { return remaining() == 0; }

    ReadonlyBytes bytes() const { return { data(), size() }; }
    Bytes bytes() { return { data(), size() }; }

    const u8* data() const { return m_bytes.data(); }
    u8* data() { return m_bytes.data(); }

    size_t size() const { return m_offset; }
    size_t remaining() const { return m_bytes.size() - m_offset; }
    void reset() { m_offset = 0; }

private:
    size_t m_offset { 0 };
    Bytes m_bytes;
};

class DuplexMemoryStream final : public DuplexStream {
public:
    static constexpr size_t chunk_size = 4 * 1024;

    bool unreliable_eof() const override { return eof(); }
    bool eof() const { return m_write_offset == m_read_offset; }

    bool discard_or_error(size_t count) override
    {
        if (m_write_offset - m_read_offset < count) {
            set_recoverable_error();
            return false;
        }

        m_read_offset += count;
        try_discard_chunks();
        return true;
    }

    Optional<size_t> offset_of(ReadonlyBytes value) const
    {
        // We can't directly pass m_chunks to memmem since we have a limited read/write range we want to search in.
        Vector<ReadonlyBytes> spans;
        auto chunk_index = (m_read_offset - m_base_offset) / chunk_size;
        auto chunk_read_offset = (m_read_offset - m_base_offset) % chunk_size;
        auto bytes_to_search = m_write_offset - m_read_offset;
        for (; bytes_to_search > 0;) {
            ReadonlyBytes span = m_chunks[chunk_index];
            if (chunk_read_offset) {
                span = span.slice(chunk_read_offset);
                chunk_read_offset = 0;
            }
            if (bytes_to_search < span.size()) {
                spans.append(span.slice(0, bytes_to_search));
                break;
            }
            bytes_to_search -= span.size();
            spans.append(move(span));
            ++chunk_index;
        }

        return memmem(spans.begin(), spans.end(), value);
    }

    size_t read_without_consuming(Bytes bytes) const
    {
        size_t nread = 0;
        while (bytes.size() - nread > 0 && m_write_offset - m_read_offset - nread > 0) {
            const auto chunk_index = (m_read_offset - m_base_offset + nread) / chunk_size;
            const auto chunk_bytes = m_chunks[chunk_index].bytes().slice((m_read_offset + nread) % chunk_size).trim(m_write_offset - m_read_offset - nread);
            nread += chunk_bytes.copy_trimmed_to(bytes.slice(nread));
        }

        return nread;
    }

    size_t read(Bytes bytes) override
    {
        if (has_any_error())
            return 0;

        const auto nread = read_without_consuming(bytes);

        m_read_offset += nread;
        try_discard_chunks();

        return nread;
    }

    bool read_or_error(Bytes bytes) override
    {
        if (m_write_offset - m_read_offset < bytes.size()) {
            set_recoverable_error();
            return false;
        }

        return read(bytes) == bytes.size();
    }

    size_t write(ReadonlyBytes bytes) override
    {
        // FIXME: This doesn't write around chunk borders correctly?

        size_t nwritten = 0;
        while (bytes.size() - nwritten > 0) {
            if ((m_write_offset + nwritten) % chunk_size == 0)
                m_chunks.append(ByteBuffer::create_uninitialized(chunk_size));

            nwritten += bytes.slice(nwritten).copy_trimmed_to(m_chunks.last().bytes().slice((m_write_offset + nwritten) % chunk_size));
        }

        m_write_offset += nwritten;
        return nwritten;
    }

    bool write_or_error(ReadonlyBytes bytes) override
    {
        write(bytes);
        return true;
    }

    ByteBuffer copy_into_contiguous_buffer() const
    {
        auto buffer = ByteBuffer::create_uninitialized(size());

        const auto nread = read_without_consuming(buffer);
        VERIFY(nread == buffer.size());

        return buffer;
    }

    size_t roffset() const { return m_read_offset; }
    size_t woffset() const { return m_write_offset; }

    size_t size() const { return m_write_offset - m_read_offset; }

private:
    void try_discard_chunks()
    {
        while (m_read_offset - m_base_offset >= chunk_size) {
            m_chunks.take_first();
            m_base_offset += chunk_size;
        }
    }

    Vector<ByteBuffer> m_chunks;
    size_t m_write_offset { 0 };
    size_t m_read_offset { 0 };
    size_t m_base_offset { 0 };
};

}

using AK::DuplexMemoryStream;
using AK::InputMemoryStream;
using AK::InputStream;
using AK::OutputMemoryStream;