summaryrefslogtreecommitdiff
path: root/AK/MemoryStream.h
blob: dc8818698ef79a18a118d47dd7d6d52d9b5957af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/*
 * Copyright (c) 2020, the SerenityOS developers.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#pragma once

#include <AK/ByteBuffer.h>
#include <AK/MemMem.h>
#include <AK/Stream.h>
#include <AK/Vector.h>

namespace AK {

class InputMemoryStream final : public InputStream {
public:
    InputMemoryStream(ReadonlyBytes bytes)
        : m_bytes(bytes)
    {
    }

    bool eof() const override { return m_offset >= m_bytes.size(); }

    size_t read(Bytes bytes) override
    {
        const auto count = min(bytes.size(), remaining());
        __builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, count);
        m_offset += count;
        return count;
    }

    bool read_or_error(Bytes bytes) override
    {
        if (remaining() < bytes.size()) {
            set_recoverable_error();
            return false;
        }

        __builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, bytes.size());
        m_offset += bytes.size();
        return true;
    }

    bool discard_or_error(size_t count) override
    {
        if (remaining() < count) {
            set_recoverable_error();
            return false;
        }

        m_offset += count;
        return true;
    }

    void seek(size_t offset)
    {
        ASSERT(offset < m_bytes.size());
        m_offset = offset;
    }

    u8 peek_or_error() const
    {
        if (remaining() == 0) {
            set_recoverable_error();
            return 0;
        }

        return m_bytes[m_offset];
    }

    // LEB128 is a variable-length encoding for integers
    bool read_LEB128_unsigned(size_t& result)
    {
        const auto backup = m_offset;

        result = 0;
        size_t num_bytes = 0;
        while (true) {
            // Note. The implementation in AK::BufferStream::read_LEB128_unsigned read one
            //       past the end, this is fixed here.
            if (eof()) {
                m_offset = backup;
                set_recoverable_error();
                return false;
            }

            const u8 byte = m_bytes[m_offset];
            result = (result) | (static_cast<size_t>(byte & ~(1 << 7)) << (num_bytes * 7));
            ++m_offset;
            if (!(byte & (1 << 7)))
                break;
            ++num_bytes;
        }

        return true;
    }

    // LEB128 is a variable-length encoding for integers
    bool read_LEB128_signed(ssize_t& result)
    {
        const auto backup = m_offset;

        result = 0;
        size_t num_bytes = 0;
        u8 byte = 0;

        do {
            // Note. The implementation in AK::BufferStream::read_LEB128_unsigned read one
            //       past the end, this is fixed here.
            if (eof()) {
                m_offset = backup;
                set_recoverable_error();
                return false;
            }

            byte = m_bytes[m_offset];
            result = (result) | (static_cast<size_t>(byte & ~(1 << 7)) << (num_bytes * 7));
            ++m_offset;
            ++num_bytes;
        } while (byte & (1 << 7));

        if (num_bytes * 7 < sizeof(size_t) * 4 && (byte & 0x40)) {
            // sign extend
            result |= ((size_t)(-1) << (num_bytes * 7));
        }

        return true;
    }

    ReadonlyBytes bytes() const { return m_bytes; }
    size_t offset() const { return m_offset; }
    size_t remaining() const { return m_bytes.size() - m_offset; }

private:
    ReadonlyBytes m_bytes;
    size_t m_offset { 0 };
};

// All data written to this stream can be read from it. Reading and writing is done
// using different offsets, meaning that it is not necessary to seek to the start
// before reading; this behaviour differs from BufferStream.
class DuplexMemoryStream final : public DuplexStream {
public:
    static constexpr size_t chunk_size = 4 * 1024;

    bool eof() const override { return m_write_offset == m_read_offset; }

    bool discard_or_error(size_t count) override
    {
        if (m_write_offset - m_read_offset < count) {
            set_recoverable_error();
            return false;
        }

        m_read_offset += count;
        try_discard_chunks();
        return true;
    }

    Optional<size_t> offset_of(ReadonlyBytes value) const
    {
        if (value.size() > remaining())
            return {};

        // First, find which chunk we're in.
        auto chunk_index = (m_read_offset - m_base_offset) / chunk_size;
        auto last_written_chunk_index = (m_write_offset - m_base_offset) / chunk_size;
        auto first_chunk_index = chunk_index;
        auto last_written_chunk_offset = m_write_offset % chunk_size;
        auto first_chunk_offset = m_read_offset % chunk_size;
        size_t last_chunk_offset = 0;
        auto found_value = false;

        for (; chunk_index <= last_written_chunk_index; ++chunk_index) {
            auto chunk_bytes = m_chunks[chunk_index].bytes();
            size_t chunk_offset = 0;
            if (chunk_index == last_written_chunk_index) {
                chunk_bytes = chunk_bytes.slice(0, last_written_chunk_offset);
            }
            if (chunk_index == first_chunk_index) {
                chunk_bytes = chunk_bytes.slice(first_chunk_offset);
                chunk_offset = first_chunk_offset;
            }

            // See if 'value' is in this chunk,
            auto position = AK::memmem(chunk_bytes.data(), chunk_bytes.size(), value.data(), value.size());
            if (!position)
                continue; // Not in this chunk either :(

            // We found it!
            found_value = true;
            last_chunk_offset = (const u8*)position - chunk_bytes.data() + chunk_offset;
            break;
        }

        if (found_value) {
            if (first_chunk_index == chunk_index)
                return last_chunk_offset - first_chunk_offset;

            return (chunk_index - first_chunk_index) * chunk_size + last_chunk_offset - first_chunk_offset;
        }

        // No dice.
        return {};
    }

    size_t read_without_consuming(Bytes bytes) const
    {
        size_t nread = 0;
        while (bytes.size() - nread > 0 && m_write_offset - m_read_offset - nread > 0) {
            const auto chunk_index = (m_read_offset - m_base_offset) / chunk_size;
            const auto chunk_bytes = m_chunks[chunk_index].bytes().slice(m_read_offset % chunk_size).trim(m_write_offset - m_read_offset - nread);
            nread += chunk_bytes.copy_trimmed_to(bytes.slice(nread));
        }

        return nread;
    }

    size_t read(Bytes bytes) override
    {
        const auto nread = read_without_consuming(bytes);

        m_read_offset += nread;
        try_discard_chunks();

        return nread;
    }

    bool read_or_error(Bytes bytes) override
    {
        if (m_write_offset - m_read_offset < bytes.size()) {
            set_recoverable_error();
            return false;
        }

        read(bytes);
        return true;
    }

    size_t write(ReadonlyBytes bytes) override
    {
        size_t nwritten = 0;
        while (bytes.size() - nwritten > 0) {
            if ((m_write_offset + nwritten) % chunk_size == 0)
                m_chunks.append(ByteBuffer::create_uninitialized(chunk_size));

            nwritten += bytes.copy_trimmed_to(m_chunks.last().bytes().slice(m_write_offset % chunk_size));
        }

        m_write_offset += nwritten;
        return nwritten;
    }

    bool write_or_error(ReadonlyBytes bytes) override
    {
        write(bytes);
        return true;
    }

    ByteBuffer copy_into_contiguous_buffer() const
    {
        auto buffer = ByteBuffer::create_uninitialized(remaining());

        const auto nread = read_without_consuming(buffer);
        ASSERT(nread == buffer.size());

        return buffer;
    }

    size_t roffset() const { return m_read_offset; }
    size_t woffset() const { return m_write_offset; }

    size_t remaining() const { return m_write_offset - m_read_offset; }

private:
    void try_discard_chunks()
    {
        while (m_read_offset - m_base_offset >= chunk_size) {
            m_chunks.take_first();
            m_base_offset += chunk_size;
        }
    }

    Vector<ByteBuffer> m_chunks;
    size_t m_write_offset { 0 };
    size_t m_read_offset { 0 };
    size_t m_base_offset { 0 };
};

}

using AK::DuplexMemoryStream;
using AK::InputMemoryStream;
using AK::InputStream;