summaryrefslogtreecommitdiff
path: root/AK/IntrusiveRedBlackTree.h
blob: 5791760801494b2c1ffb40928eb99b2302b63345 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*
 * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/RedBlackTree.h>

namespace AK {

template<Integral K>
class IntrusiveRedBlackTreeNode;

template<Integral K, typename V, IntrusiveRedBlackTreeNode<K> V::*member>
class IntrusiveRedBlackTree final : public BaseRedBlackTree<K> {

public:
    IntrusiveRedBlackTree() = default;
    virtual ~IntrusiveRedBlackTree() override
    {
        clear();
    }

    using BaseTree = BaseRedBlackTree<K>;
    using TreeNode = IntrusiveRedBlackTreeNode<K>;

    V* find(K key)
    {
        auto* node = static_cast<TreeNode*>(BaseTree::find(this->m_root, key));
        if (!node)
            return nullptr;
        return node_to_value(*node);
    }

    V* find_largest_not_above(K key)
    {
        auto* node = static_cast<TreeNode*>(BaseTree::find_largest_not_above(this->m_root, key));
        if (!node)
            return nullptr;
        return node_to_value(*node);
    }

    void insert(V& value)
    {
        auto& node = value.*member;
        BaseTree::insert(&node);
        node.m_in_tree = true;
    }

    template<typename ElementType>
    class BaseIterator {
    public:
        BaseIterator() = default;
        bool operator!=(const BaseIterator& other) const { return m_node != other.m_node; }
        BaseIterator& operator++()
        {
            if (!m_node)
                return *this;
            m_prev = m_node;
            // the complexity is O(logn) for each successor call, but the total complexity for all elements comes out to O(n), meaning the amortized cost for a single call is O(1)
            m_node = static_cast<TreeNode*>(BaseTree::successor(m_node));
            return *this;
        }
        BaseIterator& operator--()
        {
            if (!m_prev)
                return *this;
            m_node = m_prev;
            m_prev = static_cast<TreeNode*>(BaseTree::predecessor(m_prev));
            return *this;
        }
        ElementType& operator*()
        {
            VERIFY(m_node);
            return *node_to_value(*m_node);
        }
        ElementType* operator->()
        {
            VERIFY(m_node);
            return node_to_value(*m_node);
        }
        [[nodiscard]] bool is_end() const { return !m_node; }
        [[nodiscard]] bool is_begin() const { return !m_prev; }
        [[nodiscard]] auto key() const { return m_node->key; }

    private:
        friend class IntrusiveRedBlackTree;
        explicit BaseIterator(TreeNode* node, TreeNode* prev = nullptr)
            : m_node(node)
            , m_prev(prev)
        {
        }
        TreeNode* m_node { nullptr };
        TreeNode* m_prev { nullptr };
    };

    using Iterator = BaseIterator<V>;
    Iterator begin() { return Iterator(static_cast<TreeNode*>(this->m_minimum)); }
    Iterator end() { return {}; }
    Iterator begin_from(K key) { return Iterator(static_cast<TreeNode*>(BaseTree::find(this->m_root, key))); }

    using ConstIterator = BaseIterator<const V>;
    ConstIterator begin() const { return ConstIterator(static_cast<TreeNode*>(this->m_minimum)); }
    ConstIterator end() const { return {}; }
    ConstIterator begin_from(K key) const { return ConstIterator(static_cast<TreeNode*>(BaseTree::find(this->m_rootF, key))); }

    bool remove(K key)
    {
        auto* node = static_cast<TreeNode*>(BaseTree::find(this->m_root, key));
        if (!node)
            return false;

        BaseTree::remove(node);

        node->right_child = nullptr;
        node->left_child = nullptr;
        node->m_in_tree = false;

        return true;
    }

    void clear()
    {
        clear_nodes(static_cast<TreeNode*>(this->m_root));
        this->m_root = nullptr;
        this->m_minimum = nullptr;
        this->m_size = 0;
    }

private:
    static void clear_nodes(TreeNode* node)
    {
        if (!node)
            return;
        clear_nodes(static_cast<TreeNode*>(node->right_child));
        node->right_child = nullptr;
        clear_nodes(static_cast<TreeNode*>(node->left_child));
        node->left_child = nullptr;
        node->m_in_tree = false;
    }

    static V* node_to_value(TreeNode& node)
    {
        return (V*)((u8*)&node - ((u8*)&(((V*)nullptr)->*member) - (u8*)nullptr));
    }
};

template<Integral K>
class IntrusiveRedBlackTreeNode : public BaseRedBlackTree<K>::Node {
public:
    IntrusiveRedBlackTreeNode(K key)
        : BaseRedBlackTree<K>::Node(key)
    {
    }

    ~IntrusiveRedBlackTreeNode()
    {
        VERIFY(!is_in_tree());
    }

    [[nodiscard]] bool is_in_tree() const
    {
        return m_in_tree;
    }

private:
    template<Integral TK, typename V, IntrusiveRedBlackTreeNode<TK> V::*member>
    friend class IntrusiveRedBlackTree;
    bool m_in_tree { false };
};

}

using AK::IntrusiveRedBlackTree;
using AK::IntrusiveRedBlackTreeNode;