summaryrefslogtreecommitdiff
path: root/AK/IntrusiveRedBlackTree.h
blob: e4513471f68538434a4ccd8b4531b9011e5796fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
 * Copyright (c) 2021, Idan Horowitz <idan.horowitz@gmail.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#pragma once

#include <AK/RedBlackTree.h>

namespace AK {

template<Integral K>
class IntrusiveRedBlackTreeNode;

template<Integral K, typename V, IntrusiveRedBlackTreeNode<K> V::*member>
class IntrusiveRedBlackTree : public BaseRedBlackTree<K> {
public:
    IntrusiveRedBlackTree() = default;
    virtual ~IntrusiveRedBlackTree() override
    {
        clear();
    }

    using BaseTree = BaseRedBlackTree<K>;
    using TreeNode = IntrusiveRedBlackTreeNode<K>;

    V* find(K key)
    {
        auto* node = static_cast<TreeNode*>(BaseTree::find(this->m_root, key));
        if (!node)
            return nullptr;
        return node_to_value(*node);
    }

    V* find_largest_not_above(K key)
    {
        auto* node = static_cast<TreeNode*>(BaseTree::find_largest_not_above(this->m_root, key));
        if (!node)
            return nullptr;
        return node_to_value(*node);
    }

    void insert(V& value)
    {
        auto& node = value.*member;
        BaseTree::insert(&node);
        node.m_in_tree = true;
    }

    template<typename ElementType>
    class BaseIterator {
    public:
        BaseIterator() = default;
        bool operator!=(const BaseIterator& other) const { return m_node != other.m_node; }
        BaseIterator& operator++()
        {
            if (!m_node)
                return *this;
            m_prev = m_node;
            // the complexity is O(logn) for each successor call, but the total complexity for all elements comes out to O(n), meaning the amortized cost for a single call is O(1)
            m_node = static_cast<TreeNode*>(BaseTree::successor(m_node));
            return *this;
        }
        BaseIterator& operator--()
        {
            if (!m_prev)
                return *this;
            m_node = m_prev;
            m_prev = static_cast<TreeNode*>(BaseTree::predecessor(m_prev));
            return *this;
        }
        ElementType& operator*()
        {
            VERIFY(m_node);
            return *node_to_value(*m_node);
        }
        ElementType* operator->()
        {
            VERIFY(m_node);
            return node_to_value(*m_node);
        }
        [[nodiscard]] bool is_end() const { return !m_node; }
        [[nodiscard]] bool is_begin() const { return !m_prev; }

    private:
        friend class IntrusiveRedBlackTree;
        explicit BaseIterator(TreeNode* node, TreeNode* prev = nullptr)
            : m_node(node)
            , m_prev(prev)
        {
        }
        TreeNode* m_node { nullptr };
        TreeNode* m_prev { nullptr };
    };

    using Iterator = BaseIterator<V>;
    Iterator begin() { return Iterator(static_cast<TreeNode*>(this->m_minimum)); }
    Iterator end() { return {}; }
    Iterator begin_from(K key) { return Iterator(static_cast<TreeNode*>(BaseTree::find(this->m_root, key))); }

    using ConstIterator = BaseIterator<const V>;
    ConstIterator begin() const { return ConstIterator(static_cast<TreeNode*>(this->m_minimum)); }
    ConstIterator end() const { return {}; }
    ConstIterator begin_from(K key) const { return ConstIterator(static_cast<TreeNode*>(BaseTree::find(this->m_rootF, key))); }

    bool remove(K key)
    {
        auto* node = static_cast<TreeNode*>(BaseTree::find(this->m_root, key));
        if (!node)
            return false;

        BaseTree::remove(node);

        node->right_child = nullptr;
        node->left_child = nullptr;
        node->m_in_tree = false;

        return true;
    }

    void clear()
    {
        clear_nodes(static_cast<TreeNode*>(this->m_root));
        this->m_root = nullptr;
        this->m_minimum = nullptr;
        this->m_size = 0;
    }

private:
    static void clear_nodes(TreeNode* node)
    {
        if (!node)
            return;
        clear_nodes(static_cast<TreeNode*>(node->right_child));
        node->right_child = nullptr;
        clear_nodes(static_cast<TreeNode*>(node->left_child));
        node->left_child = nullptr;
        node->m_in_tree = false;
    }

    static V* node_to_value(TreeNode& node)
    {
        return (V*)((u8*)&node - ((u8*)&(((V*)nullptr)->*member) - (u8*)nullptr));
    }
};

template<Integral K>
class IntrusiveRedBlackTreeNode : public BaseRedBlackTree<K>::Node {
public:
    IntrusiveRedBlackTreeNode(K key)
        : BaseRedBlackTree<K>::Node(key)
    {
    }

    ~IntrusiveRedBlackTreeNode()
    {
        VERIFY(!is_in_tree());
    }

    bool is_in_tree()
    {
        return m_in_tree;
    }

private:
    template<Integral TK, typename V, IntrusiveRedBlackTreeNode<TK> V::*member>
    friend class IntrusiveRedBlackTree;
    bool m_in_tree { false };
};

}

using AK::IntrusiveRedBlackTree;
using AK::IntrusiveRedBlackTreeNode;