summaryrefslogtreecommitdiff
path: root/AK/HashTable.h
blob: 577dce85992659481178fc73828027530ab746b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 * Copyright (c) 2023, Jelle Raaijmakers <jelle@gmta.nl>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Concepts.h>
#include <AK/Error.h>
#include <AK/StdLibExtras.h>
#include <AK/Traits.h>
#include <AK/Types.h>
#include <AK/kmalloc.h>

namespace AK {

enum class HashSetResult {
    InsertedNewEntry,
    ReplacedExistingEntry,
    KeptExistingEntry,
};

enum class HashSetExistingEntryBehavior {
    Keep,
    Replace,
};

// BucketState doubles as both an enum and a probe length value.
// - Free: empty bucket
// - Used (implicit, values 1..254): value-1 represents probe length
// - CalculateLength: same as Used but probe length > 253, so we calculate the actual probe length
enum class BucketState : u8 {
    Free = 0,
    CalculateLength = 255,
};

template<typename HashTableType, typename T, typename BucketType>
class HashTableIterator {
    friend HashTableType;

public:
    bool operator==(HashTableIterator const& other) const { return m_bucket == other.m_bucket; }
    bool operator!=(HashTableIterator const& other) const { return m_bucket != other.m_bucket; }
    T& operator*() { return *m_bucket->slot(); }
    T* operator->() { return m_bucket->slot(); }
    void operator++() { skip_to_next(); }

private:
    void skip_to_next()
    {
        if (!m_bucket)
            return;
        do {
            ++m_bucket;
            if (m_bucket == m_end_bucket) {
                m_bucket = nullptr;
                return;
            }
        } while (m_bucket->state == BucketState::Free);
    }

    HashTableIterator(BucketType* bucket, BucketType* end_bucket)
        : m_bucket(bucket)
        , m_end_bucket(end_bucket)
    {
    }

    BucketType* m_bucket { nullptr };
    BucketType* m_end_bucket { nullptr };
};

template<typename OrderedHashTableType, typename T, typename BucketType>
class OrderedHashTableIterator {
    friend OrderedHashTableType;

public:
    bool operator==(OrderedHashTableIterator const& other) const { return m_bucket == other.m_bucket; }
    bool operator!=(OrderedHashTableIterator const& other) const { return m_bucket != other.m_bucket; }
    T& operator*() { return *m_bucket->slot(); }
    T* operator->() { return m_bucket->slot(); }
    void operator++() { m_bucket = m_bucket->next; }
    void operator--() { m_bucket = m_bucket->previous; }

private:
    OrderedHashTableIterator(BucketType* bucket, BucketType*)
        : m_bucket(bucket)
    {
    }

    BucketType* m_bucket { nullptr };
};

template<typename T, typename TraitsForT, bool IsOrdered>
class HashTable {
    static constexpr size_t grow_capacity_at_least = 8;
    static constexpr size_t grow_at_load_factor_percent = 80;
    static constexpr size_t grow_capacity_increase_percent = 60;

    struct Bucket {
        BucketState state;
        alignas(T) u8 storage[sizeof(T)];
        T* slot() { return reinterpret_cast<T*>(storage); }
        T const* slot() const { return reinterpret_cast<T const*>(storage); }
    };

    struct OrderedBucket {
        OrderedBucket* previous;
        OrderedBucket* next;
        BucketState state;
        alignas(T) u8 storage[sizeof(T)];
        T* slot() { return reinterpret_cast<T*>(storage); }
        T const* slot() const { return reinterpret_cast<T const*>(storage); }
    };

    using BucketType = Conditional<IsOrdered, OrderedBucket, Bucket>;

    struct CollectionData {
    };

    struct OrderedCollectionData {
        BucketType* head { nullptr };
        BucketType* tail { nullptr };
    };

    using CollectionDataType = Conditional<IsOrdered, OrderedCollectionData, CollectionData>;

public:
    HashTable() = default;
    explicit HashTable(size_t capacity) { rehash(capacity); }

    ~HashTable()
    {
        if (!m_buckets)
            return;

        if constexpr (!IsTriviallyDestructible<T>) {
            for (size_t i = 0; i < m_capacity; ++i) {
                if (m_buckets[i].state != BucketState::Free)
                    m_buckets[i].slot()->~T();
            }
        }

        kfree_sized(m_buckets, size_in_bytes(m_capacity));
    }

    HashTable(HashTable const& other)
    {
        rehash(other.capacity());
        for (auto& it : other)
            set(it);
    }

    HashTable& operator=(HashTable const& other)
    {
        HashTable temporary(other);
        swap(*this, temporary);
        return *this;
    }

    HashTable(HashTable&& other) noexcept
        : m_buckets(other.m_buckets)
        , m_collection_data(other.m_collection_data)
        , m_size(other.m_size)
        , m_capacity(other.m_capacity)
    {
        other.m_size = 0;
        other.m_capacity = 0;
        other.m_buckets = nullptr;
        if constexpr (IsOrdered)
            other.m_collection_data = { nullptr, nullptr };
    }

    HashTable& operator=(HashTable&& other) noexcept
    {
        HashTable temporary { move(other) };
        swap(*this, temporary);
        return *this;
    }

    friend void swap(HashTable& a, HashTable& b) noexcept
    {
        swap(a.m_buckets, b.m_buckets);
        swap(a.m_size, b.m_size);
        swap(a.m_capacity, b.m_capacity);

        if constexpr (IsOrdered)
            swap(a.m_collection_data, b.m_collection_data);
    }

    [[nodiscard]] bool is_empty() const { return m_size == 0; }
    [[nodiscard]] size_t size() const { return m_size; }
    [[nodiscard]] size_t capacity() const { return m_capacity; }

    template<typename U, size_t N>
    ErrorOr<void> try_set_from(U (&from_array)[N])
    {
        for (size_t i = 0; i < N; ++i)
            TRY(try_set(from_array[i]));
        return {};
    }
    template<typename U, size_t N>
    void set_from(U (&from_array)[N])
    {
        MUST(try_set_from(from_array));
    }

    ErrorOr<void> try_ensure_capacity(size_t capacity)
    {
        // The user usually expects "capacity" to mean the number of values that can be stored in a
        // container without it needing to reallocate. Our definition of "capacity" is the number of
        // buckets we can store, but we reallocate earlier because of `grow_at_load_factor_percent`.
        // This calculates the required internal capacity to store `capacity` number of values.
        size_t required_capacity = capacity * 100 / grow_at_load_factor_percent + 1;
        if (required_capacity <= m_capacity)
            return {};
        return try_rehash(required_capacity);
    }
    void ensure_capacity(size_t capacity)
    {
        MUST(try_ensure_capacity(capacity));
    }

    [[nodiscard]] bool contains(T const& value) const
    {
        return find(value) != end();
    }

    template<Concepts::HashCompatible<T> K>
    requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] bool contains(K const& value) const
    {
        return find(value) != end();
    }

    using Iterator = Conditional<IsOrdered,
        OrderedHashTableIterator<HashTable, T, BucketType>,
        HashTableIterator<HashTable, T, BucketType>>;

    [[nodiscard]] Iterator begin()
    {
        if constexpr (IsOrdered)
            return Iterator(m_collection_data.head, end_bucket());

        for (size_t i = 0; i < m_capacity; ++i) {
            if (m_buckets[i].state != BucketState::Free)
                return Iterator(&m_buckets[i], end_bucket());
        }
        return end();
    }

    [[nodiscard]] Iterator end()
    {
        return Iterator(nullptr, nullptr);
    }

    using ConstIterator = Conditional<IsOrdered,
        OrderedHashTableIterator<const HashTable, const T, BucketType const>,
        HashTableIterator<const HashTable, const T, BucketType const>>;

    [[nodiscard]] ConstIterator begin() const
    {
        if constexpr (IsOrdered)
            return ConstIterator(m_collection_data.head, end_bucket());

        for (size_t i = 0; i < m_capacity; ++i) {
            if (m_buckets[i].state != BucketState::Free)
                return ConstIterator(&m_buckets[i], end_bucket());
        }
        return end();
    }

    [[nodiscard]] ConstIterator end() const
    {
        return ConstIterator(nullptr, nullptr);
    }

    void clear()
    {
        *this = HashTable();
    }

    void clear_with_capacity()
    {
        if (m_capacity == 0)
            return;
        if constexpr (!IsTriviallyDestructible<T>) {
            for (auto* bucket : *this)
                bucket->~T();
        }
        __builtin_memset(m_buckets, 0, size_in_bytes(m_capacity));
        m_size = 0;

        if constexpr (IsOrdered)
            m_collection_data = { nullptr, nullptr };
    }

    template<typename U = T>
    ErrorOr<HashSetResult> try_set(U&& value, HashSetExistingEntryBehavior existing_entry_behavior = HashSetExistingEntryBehavior::Replace)
    {
        if (should_grow())
            TRY(try_rehash(m_capacity * (100 + grow_capacity_increase_percent) / 100));

        return write_value(forward<U>(value), existing_entry_behavior);
    }
    template<typename U = T>
    HashSetResult set(U&& value, HashSetExistingEntryBehavior existing_entry_behaviour = HashSetExistingEntryBehavior::Replace)
    {
        return MUST(try_set(forward<U>(value), existing_entry_behaviour));
    }

    template<typename TUnaryPredicate>
    [[nodiscard]] Iterator find(unsigned hash, TUnaryPredicate predicate)
    {
        return Iterator(lookup_with_hash(hash, move(predicate)), end_bucket());
    }

    [[nodiscard]] Iterator find(T const& value)
    {
        return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); });
    }

    template<typename TUnaryPredicate>
    [[nodiscard]] ConstIterator find(unsigned hash, TUnaryPredicate predicate) const
    {
        return ConstIterator(lookup_with_hash(hash, move(predicate)), end_bucket());
    }

    [[nodiscard]] ConstIterator find(T const& value) const
    {
        return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); });
    }
    // FIXME: Support for predicates, while guaranteeing that the predicate call
    //        does not call a non trivial constructor each time invoked
    template<Concepts::HashCompatible<T> K>
    requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] Iterator find(K const& value)
    {
        return find(Traits<K>::hash(value), [&](auto& other) { return Traits<T>::equals(other, value); });
    }

    template<Concepts::HashCompatible<T> K, typename TUnaryPredicate>
    requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] Iterator find(K const& value, TUnaryPredicate predicate)
    {
        return find(Traits<K>::hash(value), move(predicate));
    }

    template<Concepts::HashCompatible<T> K>
    requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] ConstIterator find(K const& value) const
    {
        return find(Traits<K>::hash(value), [&](auto& other) { return Traits<T>::equals(other, value); });
    }

    template<Concepts::HashCompatible<T> K, typename TUnaryPredicate>
    requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] ConstIterator find(K const& value, TUnaryPredicate predicate) const
    {
        return find(Traits<K>::hash(value), move(predicate));
    }

    bool remove(T const& value)
    {
        auto it = find(value);
        if (it != end()) {
            remove(it);
            return true;
        }
        return false;
    }

    template<Concepts::HashCompatible<T> K>
    requires(IsSame<TraitsForT, Traits<T>>) bool remove(K const& value)
    {
        auto it = find(value);
        if (it != end()) {
            remove(it);
            return true;
        }
        return false;
    }

    // This invalidates the iterator
    void remove(Iterator& iterator)
    {
        auto* bucket = iterator.m_bucket;
        VERIFY(bucket);
        delete_bucket(*bucket);
        iterator.m_bucket = nullptr;
    }

    template<typename TUnaryPredicate>
    bool remove_all_matching(TUnaryPredicate const& predicate)
    {
        bool has_removed_anything = false;
        for (size_t i = 0; i < m_capacity; ++i) {
            auto& bucket = m_buckets[i];
            if (bucket.state == BucketState::Free || !predicate(*bucket.slot()))
                continue;

            delete_bucket(bucket);
            has_removed_anything = true;

            // If a bucket was shifted up, reevaluate this bucket index
            if (bucket.state != BucketState::Free)
                --i;
        }
        return has_removed_anything;
    }

    T pop()
    requires(IsOrdered)
    {
        VERIFY(!is_empty());
        T element = *m_collection_data.tail->slot();
        remove(element);
        return element;
    }

private:
    bool should_grow() const { return ((m_size + 1) * 100) >= (m_capacity * grow_at_load_factor_percent); }
    static constexpr size_t size_in_bytes(size_t capacity) { return sizeof(BucketType) * capacity; }

    BucketType* end_bucket()
    {
        if constexpr (IsOrdered)
            return m_collection_data.tail;
        else
            return &m_buckets[m_capacity];
    }
    BucketType const* end_bucket() const
    {
        return const_cast<HashTable*>(this)->end_bucket();
    }

    ErrorOr<void> try_rehash(size_t new_capacity)
    {
        new_capacity = max(new_capacity, m_capacity + grow_capacity_at_least);
        new_capacity = kmalloc_good_size(size_in_bytes(new_capacity)) / sizeof(BucketType);
        VERIFY(new_capacity >= size());

        auto* old_buckets = m_buckets;
        auto old_buckets_size = size_in_bytes(m_capacity);
        Iterator old_iter = begin();

        auto* new_buckets = kcalloc(1, size_in_bytes(new_capacity));
        if (!new_buckets)
            return Error::from_errno(ENOMEM);

        m_buckets = static_cast<BucketType*>(new_buckets);
        m_capacity = new_capacity;

        if constexpr (IsOrdered)
            m_collection_data = { nullptr, nullptr };

        if (!old_buckets)
            return {};

        m_size = 0;
        for (auto it = move(old_iter); it != end(); ++it) {
            write_value(move(*it), HashSetExistingEntryBehavior::Keep);
            it->~T();
        }

        kfree_sized(old_buckets, old_buckets_size);
        return {};
    }
    void rehash(size_t new_capacity)
    {
        MUST(try_rehash(new_capacity));
    }

    template<typename TUnaryPredicate>
    [[nodiscard]] BucketType* lookup_with_hash(unsigned hash, TUnaryPredicate predicate) const
    {
        if (is_empty())
            return nullptr;

        hash %= m_capacity;
        for (;;) {
            auto* bucket = &m_buckets[hash];
            if (bucket->state == BucketState::Free)
                return nullptr;
            if (predicate(*bucket->slot()))
                return bucket;
            if (++hash == m_capacity) [[unlikely]]
                hash = 0;
        }
    }

    size_t used_bucket_probe_length(BucketType const& bucket) const
    {
        VERIFY(bucket.state != BucketState::Free);

        if (bucket.state == BucketState::CalculateLength) {
            size_t ideal_bucket_index = TraitsForT::hash(*bucket.slot()) % m_capacity;

            VERIFY(&bucket >= m_buckets);
            size_t actual_bucket_index = &bucket - m_buckets;

            if (actual_bucket_index < ideal_bucket_index)
                return m_capacity + actual_bucket_index - ideal_bucket_index;
            return actual_bucket_index - ideal_bucket_index;
        }

        return static_cast<u8>(bucket.state) - 1;
    }

    ALWAYS_INLINE constexpr BucketState bucket_state_for_probe_length(size_t probe_length)
    {
        if (probe_length > 253)
            return BucketState::CalculateLength;
        return static_cast<BucketState>(probe_length + 1);
    }

    template<typename U = T>
    HashSetResult write_value(U&& value, HashSetExistingEntryBehavior existing_entry_behavior)
    {
        auto update_collection_for_new_bucket = [&](BucketType& bucket) {
            if constexpr (IsOrdered) {
                if (!m_collection_data.head) [[unlikely]] {
                    m_collection_data.head = &bucket;
                } else {
                    bucket.previous = m_collection_data.tail;
                    m_collection_data.tail->next = &bucket;
                }
                m_collection_data.tail = &bucket;
            }
        };
        auto update_collection_for_swapped_buckets = [&](BucketType* left_bucket, BucketType* right_bucket) {
            if constexpr (IsOrdered) {
                if (m_collection_data.head == left_bucket)
                    m_collection_data.head = right_bucket;
                else if (m_collection_data.head == right_bucket)
                    m_collection_data.head = left_bucket;
                if (m_collection_data.tail == left_bucket)
                    m_collection_data.tail = right_bucket;
                else if (m_collection_data.tail == right_bucket)
                    m_collection_data.tail = left_bucket;

                if (left_bucket->previous) {
                    if (left_bucket->previous == left_bucket)
                        left_bucket->previous = right_bucket;
                    left_bucket->previous->next = left_bucket;
                }
                if (left_bucket->next) {
                    if (left_bucket->next == left_bucket)
                        left_bucket->next = right_bucket;
                    left_bucket->next->previous = left_bucket;
                }

                if (right_bucket->previous && right_bucket->previous != left_bucket)
                    right_bucket->previous->next = right_bucket;
                if (right_bucket->next && right_bucket->next != left_bucket)
                    right_bucket->next->previous = right_bucket;
            }
        };

        auto bucket_index = TraitsForT::hash(value) % m_capacity;
        size_t probe_length = 0;
        for (;;) {
            auto* bucket = &m_buckets[bucket_index];

            // We found a free bucket, write to it and stop
            if (bucket->state == BucketState::Free) {
                new (bucket->slot()) T(forward<U>(value));
                bucket->state = bucket_state_for_probe_length(probe_length);
                update_collection_for_new_bucket(*bucket);
                ++m_size;
                return HashSetResult::InsertedNewEntry;
            }

            // The bucket is already used, does it have an identical value?
            if (TraitsForT::equals(*bucket->slot(), static_cast<T const&>(value))) {
                if (existing_entry_behavior == HashSetExistingEntryBehavior::Replace) {
                    (*bucket->slot()) = forward<U>(value);
                    return HashSetResult::ReplacedExistingEntry;
                }
                return HashSetResult::KeptExistingEntry;
            }

            // Robin hood: if our probe length is larger (poor) than this bucket's (rich), steal its position!
            // This ensures that we will always traverse buckets in order of probe length.
            auto target_probe_length = used_bucket_probe_length(*bucket);
            if (probe_length > target_probe_length) {
                // Copy out bucket
                BucketType bucket_to_move = move(*bucket);
                update_collection_for_swapped_buckets(bucket, &bucket_to_move);

                // Write new bucket
                new (bucket->slot()) T(forward<U>(value));
                bucket->state = bucket_state_for_probe_length(probe_length);
                probe_length = target_probe_length;
                if constexpr (IsOrdered)
                    bucket->next = nullptr;
                update_collection_for_new_bucket(*bucket);
                ++m_size;

                // Find a free bucket, swapping with smaller probe length buckets along the way
                for (;;) {
                    if (++bucket_index == m_capacity) [[unlikely]]
                        bucket_index = 0;
                    bucket = &m_buckets[bucket_index];
                    ++probe_length;

                    if (bucket->state == BucketState::Free) {
                        *bucket = move(bucket_to_move);
                        bucket->state = bucket_state_for_probe_length(probe_length);
                        update_collection_for_swapped_buckets(&bucket_to_move, bucket);
                        break;
                    }

                    target_probe_length = used_bucket_probe_length(*bucket);
                    if (probe_length > target_probe_length) {
                        swap(bucket_to_move, *bucket);
                        bucket->state = bucket_state_for_probe_length(probe_length);
                        probe_length = target_probe_length;
                        update_collection_for_swapped_buckets(&bucket_to_move, bucket);
                    }
                }

                return HashSetResult::InsertedNewEntry;
            }

            // Try next bucket
            if (++bucket_index == m_capacity) [[unlikely]]
                bucket_index = 0;
            ++probe_length;
        }
    }

    void delete_bucket(auto& bucket)
    {
        VERIFY(bucket.state != BucketState::Free);

        // Delete the bucket
        bucket.slot()->~T();
        if constexpr (IsOrdered) {
            if (bucket.previous)
                bucket.previous->next = bucket.next;
            else
                m_collection_data.head = bucket.next;
            if (bucket.next)
                bucket.next->previous = bucket.previous;
            else
                m_collection_data.tail = bucket.previous;
            bucket.previous = nullptr;
            bucket.next = nullptr;
        }
        --m_size;

        // If we deleted a bucket, we need to make sure to shift up all buckets after it to ensure
        // that we can still probe for buckets with collisions, and we automatically optimize the
        // probe lengths. To do so, we shift the following buckets up until we reach a free bucket,
        // or a bucket with a probe length of 0 (the ideal index for that bucket).
        auto update_bucket_neighbours = [&](BucketType* bucket) {
            if constexpr (IsOrdered) {
                if (bucket->previous)
                    bucket->previous->next = bucket;
                if (bucket->next)
                    bucket->next->previous = bucket;
            }
        };

        VERIFY(&bucket >= m_buckets);
        size_t shift_to_index = &bucket - m_buckets;
        VERIFY(shift_to_index < m_capacity);
        size_t shift_from_index = shift_to_index;
        for (;;) {
            if (++shift_from_index == m_capacity) [[unlikely]]
                shift_from_index = 0;

            auto* shift_from_bucket = &m_buckets[shift_from_index];
            if (shift_from_bucket->state == BucketState::Free)
                break;

            auto shift_from_probe_length = used_bucket_probe_length(*shift_from_bucket);
            if (shift_from_probe_length == 0)
                break;

            auto* shift_to_bucket = &m_buckets[shift_to_index];
            *shift_to_bucket = move(*shift_from_bucket);
            shift_to_bucket->state = bucket_state_for_probe_length(shift_from_probe_length - 1);
            update_bucket_neighbours(shift_to_bucket);

            if (++shift_to_index == m_capacity) [[unlikely]]
                shift_to_index = 0;
        }

        // Mark last bucket as free
        m_buckets[shift_to_index].state = BucketState::Free;
    }

    BucketType* m_buckets { nullptr };

    [[no_unique_address]] CollectionDataType m_collection_data;
    size_t m_size { 0 };
    size_t m_capacity { 0 };
};
}

#if USING_AK_GLOBALLY
using AK::HashSetResult;
using AK::HashTable;
using AK::OrderedHashTable;
#endif