summaryrefslogtreecommitdiff
path: root/AK/HashTable.h
blob: 14478b470111a3f29cc9ce33566070120b8d2644 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Concepts.h>
#include <AK/Error.h>
#include <AK/Forward.h>
#include <AK/HashFunctions.h>
#include <AK/StdLibExtras.h>
#include <AK/Traits.h>
#include <AK/Types.h>
#include <AK/kmalloc.h>

namespace AK {

enum class HashSetResult {
    InsertedNewEntry,
    ReplacedExistingEntry,
    KeptExistingEntry
};

enum class HashSetExistingEntryBehavior {
    Keep,
    Replace
};

// Upper nibble determines state class:
// - 0: unused bucket
// - 1: used bucket
// - F: end bucket
// Lower nibble determines state within a class.
enum class BucketState : u8 {
    Free = 0x00,
    Used = 0x10,
    Deleted = 0x01,
    Rehashed = 0x12,
    End = 0xFF,
};

// Note that because there's the end state, used and free are not 100% opposites!
constexpr bool is_used_bucket(BucketState state)
{
    return (static_cast<u8>(state) & 0xf0) == 0x10;
}

constexpr bool is_free_bucket(BucketState state)
{
    return (static_cast<u8>(state) & 0xf0) == 0x00;
}

template<typename HashTableType, typename T, typename BucketType>
class HashTableIterator {
    friend HashTableType;

public:
    bool operator==(HashTableIterator const& other) const { return m_bucket == other.m_bucket; }
    bool operator!=(HashTableIterator const& other) const { return m_bucket != other.m_bucket; }
    T& operator*() { return *m_bucket->slot(); }
    T* operator->() { return m_bucket->slot(); }
    void operator++() { skip_to_next(); }

private:
    void skip_to_next()
    {
        if (!m_bucket)
            return;
        do {
            ++m_bucket;
            if (m_bucket->state == BucketState::Used)
                return;
        } while (m_bucket->state != BucketState::End);
        if (m_bucket->state == BucketState::End)
            m_bucket = nullptr;
    }

    explicit HashTableIterator(BucketType* bucket)
        : m_bucket(bucket)
    {
    }

    BucketType* m_bucket { nullptr };
};

template<typename OrderedHashTableType, typename T, typename BucketType>
class OrderedHashTableIterator {
    friend OrderedHashTableType;

public:
    bool operator==(OrderedHashTableIterator const& other) const { return m_bucket == other.m_bucket; }
    bool operator!=(OrderedHashTableIterator const& other) const { return m_bucket != other.m_bucket; }
    T& operator*() { return *m_bucket->slot(); }
    T* operator->() { return m_bucket->slot(); }
    void operator++() { m_bucket = m_bucket->next; }
    void operator--() { m_bucket = m_bucket->previous; }

private:
    explicit OrderedHashTableIterator(BucketType* bucket)
        : m_bucket(bucket)
    {
    }

    BucketType* m_bucket { nullptr };
};

template<typename T, typename TraitsForT, bool IsOrdered>
class HashTable {
    static constexpr size_t load_factor_in_percent = 60;

    struct Bucket {
        BucketState state;
        alignas(T) u8 storage[sizeof(T)];

        T* slot() { return reinterpret_cast<T*>(storage); }
        const T* slot() const { return reinterpret_cast<const T*>(storage); }
    };

    struct OrderedBucket {
        OrderedBucket* previous;
        OrderedBucket* next;
        BucketState state;
        alignas(T) u8 storage[sizeof(T)];
        T* slot() { return reinterpret_cast<T*>(storage); }
        const T* slot() const { return reinterpret_cast<const T*>(storage); }
    };

    using BucketType = Conditional<IsOrdered, OrderedBucket, Bucket>;

    struct CollectionData {
    };

    struct OrderedCollectionData {
        BucketType* head { nullptr };
        BucketType* tail { nullptr };
    };

    using CollectionDataType = Conditional<IsOrdered, OrderedCollectionData, CollectionData>;

public:
    HashTable() = default;
    explicit HashTable(size_t capacity) { rehash(capacity); }

    ~HashTable()
    {
        if (!m_buckets)
            return;

        for (size_t i = 0; i < m_capacity; ++i) {
            if (is_used_bucket(m_buckets[i].state))
                m_buckets[i].slot()->~T();
        }

        kfree_sized(m_buckets, size_in_bytes(m_capacity));
    }

    HashTable(HashTable const& other)
    {
        rehash(other.capacity());
        for (auto& it : other)
            set(it);
    }

    HashTable& operator=(HashTable const& other)
    {
        HashTable temporary(other);
        swap(*this, temporary);
        return *this;
    }

    HashTable(HashTable&& other) noexcept
        : m_buckets(other.m_buckets)
        , m_collection_data(other.m_collection_data)
        , m_size(other.m_size)
        , m_capacity(other.m_capacity)
        , m_deleted_count(other.m_deleted_count)
    {
        other.m_size = 0;
        other.m_capacity = 0;
        other.m_deleted_count = 0;
        other.m_buckets = nullptr;
        if constexpr (IsOrdered)
            other.m_collection_data = { nullptr, nullptr };
    }

    HashTable& operator=(HashTable&& other) noexcept
    {
        HashTable temporary { move(other) };
        swap(*this, temporary);
        return *this;
    }

    friend void swap(HashTable& a, HashTable& b) noexcept
    {
        swap(a.m_buckets, b.m_buckets);
        swap(a.m_size, b.m_size);
        swap(a.m_capacity, b.m_capacity);
        swap(a.m_deleted_count, b.m_deleted_count);

        if constexpr (IsOrdered)
            swap(a.m_collection_data, b.m_collection_data);
    }

    [[nodiscard]] bool is_empty() const { return m_size == 0; }
    [[nodiscard]] size_t size() const { return m_size; }
    [[nodiscard]] size_t capacity() const { return m_capacity; }

    template<typename U, size_t N>
    ErrorOr<void> try_set_from(U (&from_array)[N])
    {
        for (size_t i = 0; i < N; ++i)
            TRY(try_set(from_array[i]));
        return {};
    }
    template<typename U, size_t N>
    void set_from(U (&from_array)[N])
    {
        MUST(try_set_from(from_array));
    }

    void ensure_capacity(size_t capacity)
    {
        VERIFY(capacity >= size());
        rehash(capacity * 2);
    }

    ErrorOr<void> try_ensure_capacity(size_t capacity)
    {
        VERIFY(capacity >= size());
        return try_rehash(capacity * 2);
    }

    [[nodiscard]] bool contains(T const& value) const
    {
        return find(value) != end();
    }

    template<Concepts::HashCompatible<T> K>
    requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] bool contains(K const& value) const
    {
        return find(value) != end();
    }

    using Iterator = Conditional<IsOrdered,
        OrderedHashTableIterator<HashTable, T, BucketType>,
        HashTableIterator<HashTable, T, BucketType>>;

    [[nodiscard]] Iterator begin()
    {
        if constexpr (IsOrdered)
            return Iterator(m_collection_data.head);

        for (size_t i = 0; i < m_capacity; ++i) {
            if (is_used_bucket(m_buckets[i].state))
                return Iterator(&m_buckets[i]);
        }
        return end();
    }

    [[nodiscard]] Iterator end()
    {
        return Iterator(nullptr);
    }

    using ConstIterator = Conditional<IsOrdered,
        OrderedHashTableIterator<const HashTable, const T, const BucketType>,
        HashTableIterator<const HashTable, const T, const BucketType>>;

    [[nodiscard]] ConstIterator begin() const
    {
        if constexpr (IsOrdered)
            return ConstIterator(m_collection_data.head);

        for (size_t i = 0; i < m_capacity; ++i) {
            if (is_used_bucket(m_buckets[i].state))
                return ConstIterator(&m_buckets[i]);
        }
        return end();
    }

    [[nodiscard]] ConstIterator end() const
    {
        return ConstIterator(nullptr);
    }

    void clear()
    {
        *this = HashTable();
    }
    void clear_with_capacity()
    {
        if constexpr (!Detail::IsTriviallyDestructible<T>) {
            for (auto* bucket : *this)
                bucket->~T();
        }
        __builtin_memset(m_buckets, 0, size_in_bytes(capacity()));
        m_size = 0;
        m_deleted_count = 0;

        if constexpr (IsOrdered)
            m_collection_data = { nullptr, nullptr };
        else
            m_buckets[m_capacity].state = BucketState::End;
    }

    template<typename U = T>
    ErrorOr<HashSetResult> try_set(U&& value, HashSetExistingEntryBehavior existing_entry_behavior = HashSetExistingEntryBehavior::Replace)
    {
        auto* bucket = TRY(try_lookup_for_writing(value));
        if (is_used_bucket(bucket->state)) {
            if (existing_entry_behavior == HashSetExistingEntryBehavior::Keep)
                return HashSetResult::KeptExistingEntry;
            (*bucket->slot()) = forward<U>(value);
            return HashSetResult::ReplacedExistingEntry;
        }

        new (bucket->slot()) T(forward<U>(value));
        if (bucket->state == BucketState::Deleted)
            --m_deleted_count;
        bucket->state = BucketState::Used;

        if constexpr (IsOrdered) {
            if (!m_collection_data.head) [[unlikely]] {
                m_collection_data.head = bucket;
            } else {
                bucket->previous = m_collection_data.tail;
                m_collection_data.tail->next = bucket;
            }
            m_collection_data.tail = bucket;
        }

        ++m_size;
        return HashSetResult::InsertedNewEntry;
    }
    template<typename U = T>
    HashSetResult set(U&& value, HashSetExistingEntryBehavior existing_entry_behaviour = HashSetExistingEntryBehavior::Replace)
    {
        return MUST(try_set(forward<U>(value), existing_entry_behaviour));
    }

    template<typename TUnaryPredicate>
    [[nodiscard]] Iterator find(unsigned hash, TUnaryPredicate predicate)
    {
        return Iterator(lookup_with_hash(hash, move(predicate)));
    }

    [[nodiscard]] Iterator find(T const& value)
    {
        return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); });
    }

    template<typename TUnaryPredicate>
    [[nodiscard]] ConstIterator find(unsigned hash, TUnaryPredicate predicate) const
    {
        return ConstIterator(lookup_with_hash(hash, move(predicate)));
    }

    [[nodiscard]] ConstIterator find(T const& value) const
    {
        return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); });
    }
    // FIXME: Support for predicates, while guaranteeing that the predicate call
    //        does not call a non trivial constructor each time invoked
    template<Concepts::HashCompatible<T> K>
    requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] Iterator find(K const& value)
    {
        return find(Traits<K>::hash(value), [&](auto& other) { return Traits<T>::equals(other, value); });
    }

    template<Concepts::HashCompatible<T> K, typename TUnaryPredicate>
    requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] Iterator find(K const& value, TUnaryPredicate predicate)
    {
        return find(Traits<K>::hash(value), move(predicate));
    }

    template<Concepts::HashCompatible<T> K>
    requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] ConstIterator find(K const& value) const
    {
        return find(Traits<K>::hash(value), [&](auto& other) { return Traits<T>::equals(other, value); });
    }

    template<Concepts::HashCompatible<T> K, typename TUnaryPredicate>
    requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] ConstIterator find(K const& value, TUnaryPredicate predicate) const
    {
        return find(Traits<K>::hash(value), move(predicate));
    }

    bool remove(const T& value)
    {
        auto it = find(value);
        if (it != end()) {
            remove(it);
            return true;
        }
        return false;
    }

    template<Concepts::HashCompatible<T> K>
    requires(IsSame<TraitsForT, Traits<T>>) bool remove(K const& value)
    {
        auto it = find(value);
        if (it != end()) {
            remove(it);
            return true;
        }
        return false;
    }

    void remove(Iterator iterator)
    {
        VERIFY(iterator.m_bucket);
        auto& bucket = *iterator.m_bucket;
        VERIFY(is_used_bucket(bucket.state));

        delete_bucket(bucket);
        --m_size;
        ++m_deleted_count;

        rehash_in_place_if_needed();
    }

    template<typename TUnaryPredicate>
    bool remove_all_matching(TUnaryPredicate predicate)
    {
        size_t removed_count = 0;
        for (size_t i = 0; i < m_capacity; ++i) {
            auto& bucket = m_buckets[i];
            if (is_used_bucket(bucket.state) && predicate(*bucket.slot())) {
                delete_bucket(bucket);
                ++removed_count;
            }
        }
        if (removed_count) {
            m_deleted_count += removed_count;
            m_size -= removed_count;
        }
        rehash_in_place_if_needed();
        return removed_count;
    }

private:
    void insert_during_rehash(T&& value)
    {
        auto& bucket = lookup_for_writing(value);
        new (bucket.slot()) T(move(value));
        bucket.state = BucketState::Used;

        if constexpr (IsOrdered) {
            if (!m_collection_data.head) [[unlikely]] {
                m_collection_data.head = &bucket;
            } else {
                bucket.previous = m_collection_data.tail;
                m_collection_data.tail->next = &bucket;
            }
            m_collection_data.tail = &bucket;
        }
    }

    [[nodiscard]] static constexpr size_t size_in_bytes(size_t capacity)
    {
        if constexpr (IsOrdered) {
            return sizeof(BucketType) * capacity;
        } else {
            return sizeof(BucketType) * (capacity + 1);
        }
    }

    ErrorOr<void> try_rehash(size_t new_capacity)
    {
        if (new_capacity == m_capacity && new_capacity >= 4) {
            rehash_in_place();
            return {};
        }

        new_capacity = max(new_capacity, static_cast<size_t>(4));
        new_capacity = kmalloc_good_size(new_capacity * sizeof(BucketType)) / sizeof(BucketType);

        auto* old_buckets = m_buckets;
        auto old_capacity = m_capacity;
        Iterator old_iter = begin();

        auto* new_buckets = kcalloc(1, size_in_bytes(new_capacity));
        if (!new_buckets)
            return Error::from_errno(ENOMEM);

        m_buckets = (BucketType*)new_buckets;

        m_capacity = new_capacity;
        m_deleted_count = 0;

        if constexpr (IsOrdered)
            m_collection_data = { nullptr, nullptr };
        else
            m_buckets[m_capacity].state = BucketState::End;

        if (!old_buckets)
            return {};

        for (auto it = move(old_iter); it != end(); ++it) {
            insert_during_rehash(move(*it));
            it->~T();
        }

        kfree_sized(old_buckets, size_in_bytes(old_capacity));
        return {};
    }
    void rehash(size_t new_capacity)
    {
        MUST(try_rehash(new_capacity));
    }

    void rehash_in_place()
    {
        // FIXME: This implementation takes two loops over the entire bucket array, but avoids re-allocation.
        //        Please benchmark your new implementation before you replace this.
        //        The reason is that because of collisions, we use the special "rehashed" bucket state to mark already-rehashed used buckets.
        //        Because we of course want to write into old used buckets, but already rehashed data shall not be touched.

        // FIXME: Find a way to reduce the cognitive complexity of this function.

        for (size_t i = 0; i < m_capacity; ++i) {
            auto& bucket = m_buckets[i];

            // FIXME: Bail out when we have handled every filled bucket.

            if (bucket.state == BucketState::Rehashed || bucket.state == BucketState::End || bucket.state == BucketState::Free)
                continue;
            if (bucket.state == BucketState::Deleted) {
                bucket.state = BucketState::Free;
                continue;
            }

            auto const new_hash = TraitsForT::hash(*bucket.slot());
            if (new_hash % m_capacity == i) {
                bucket.state = BucketState::Rehashed;
                continue;
            }

            auto target_hash = new_hash;
            auto const to_move_hash = i;
            BucketType* target_bucket = &m_buckets[target_hash % m_capacity];
            BucketType* bucket_to_move = &m_buckets[i];

            // Try to move the bucket to move into its correct spot.
            // During the procedure, we might re-hash or actually change the bucket to move.
            while (!is_free_bucket(bucket_to_move->state)) {

                // If we're targeting ourselves, there's nothing to do.
                if (to_move_hash == target_hash % m_capacity) {
                    bucket_to_move->state = BucketState::Rehashed;
                    break;
                }

                if (is_free_bucket(target_bucket->state)) {
                    // We can just overwrite the target bucket and bail out.
                    new (target_bucket->slot()) T(move(*bucket_to_move->slot()));
                    target_bucket->state = BucketState::Rehashed;
                    bucket_to_move->state = BucketState::Free;

                    if constexpr (IsOrdered) {
                        swap(bucket_to_move->previous, target_bucket->previous);
                        swap(bucket_to_move->next, target_bucket->next);

                        if (target_bucket->previous)
                            target_bucket->previous->next = target_bucket;
                        else
                            m_collection_data.head = target_bucket;
                        if (target_bucket->next)
                            target_bucket->next->previous = target_bucket;
                        else
                            m_collection_data.tail = target_bucket;
                    }
                } else if (target_bucket->state == BucketState::Rehashed) {
                    // If the target bucket is already re-hashed, we do normal probing.
                    target_hash = double_hash(target_hash);
                    target_bucket = &m_buckets[target_hash % m_capacity];
                } else {
                    VERIFY(target_bucket->state != BucketState::End);
                    // The target bucket is a used bucket that hasn't been re-hashed.
                    // Swap the data into the target; now the target's data resides in the bucket to move again.
                    // (That's of course what we want, how neat!)
                    swap(*bucket_to_move->slot(), *target_bucket->slot());
                    bucket_to_move->state = target_bucket->state;
                    target_bucket->state = BucketState::Rehashed;

                    if constexpr (IsOrdered) {
                        // Update state for the target bucket, we'll do the bucket to move later.
                        swap(bucket_to_move->previous, target_bucket->previous);
                        swap(bucket_to_move->next, target_bucket->next);

                        if (target_bucket->previous)
                            target_bucket->previous->next = target_bucket;
                        else
                            m_collection_data.head = target_bucket;
                        if (target_bucket->next)
                            target_bucket->next->previous = target_bucket;
                        else
                            m_collection_data.tail = target_bucket;
                    }

                    target_hash = TraitsForT::hash(*bucket_to_move->slot());
                    target_bucket = &m_buckets[target_hash % m_capacity];

                    // The data is already in the correct location: Adjust the pointers
                    if (target_hash % m_capacity == to_move_hash) {
                        bucket_to_move->state = BucketState::Rehashed;
                        if constexpr (IsOrdered) {
                            // Update state for the bucket to move as it's not actually moved anymore.
                            if (bucket_to_move->previous)
                                bucket_to_move->previous->next = bucket_to_move;
                            else
                                m_collection_data.head = bucket_to_move;
                            if (bucket_to_move->next)
                                bucket_to_move->next->previous = bucket_to_move;
                            else
                                m_collection_data.tail = bucket_to_move;
                        }
                        break;
                    }
                }
            }
            // After this, the bucket_to_move either contains data that rehashes to itself, or it contains nothing as we were able to move the last thing.
            if (bucket_to_move->state == BucketState::Deleted)
                bucket_to_move->state = BucketState::Free;
        }

        for (size_t i = 0; i < m_capacity; ++i) {
            if (m_buckets[i].state == BucketState::Rehashed)
                m_buckets[i].state = BucketState::Used;
        }

        m_deleted_count = 0;
    }

    void rehash_in_place_if_needed()
    {
        // This signals a "thrashed" hash table with many deleted slots.
        if (m_deleted_count >= m_size && should_grow())
            rehash_in_place();
    }

    template<typename TUnaryPredicate>
    [[nodiscard]] BucketType* lookup_with_hash(unsigned hash, TUnaryPredicate predicate) const
    {
        if (is_empty())
            return nullptr;

        for (;;) {
            auto& bucket = m_buckets[hash % m_capacity];

            if (is_used_bucket(bucket.state) && predicate(*bucket.slot()))
                return &bucket;

            if (bucket.state != BucketState::Used && bucket.state != BucketState::Deleted)
                return nullptr;

            hash = double_hash(hash);
        }
    }

    ErrorOr<BucketType*> try_lookup_for_writing(T const& value)
    {
        // FIXME: Maybe overrun the "allowed" load factor to avoid OOM
        //        If we are allowed to do that, separate that logic from
        //        the normal lookup_for_writing
        if (should_grow())
            TRY(try_rehash(capacity() * 2));
        auto hash = TraitsForT::hash(value);
        BucketType* first_empty_bucket = nullptr;
        for (;;) {
            auto& bucket = m_buckets[hash % m_capacity];

            if (is_used_bucket(bucket.state) && TraitsForT::equals(*bucket.slot(), value))
                return &bucket;

            if (!is_used_bucket(bucket.state)) {
                if (!first_empty_bucket)
                    first_empty_bucket = &bucket;

                if (bucket.state != BucketState::Deleted)
                    return const_cast<BucketType*>(first_empty_bucket);
            }

            hash = double_hash(hash);
        }
    }
    [[nodiscard]] BucketType& lookup_for_writing(T const& value)
    {
        return *MUST(try_lookup_for_writing(value));
    }

    [[nodiscard]] size_t used_bucket_count() const { return m_size + m_deleted_count; }
    [[nodiscard]] bool should_grow() const { return ((used_bucket_count() + 1) * 100) >= (m_capacity * load_factor_in_percent); }

    void delete_bucket(auto& bucket)
    {
        bucket.slot()->~T();
        bucket.state = BucketState::Deleted;

        if constexpr (IsOrdered) {
            if (bucket.previous)
                bucket.previous->next = bucket.next;
            else
                m_collection_data.head = bucket.next;

            if (bucket.next)
                bucket.next->previous = bucket.previous;
            else
                m_collection_data.tail = bucket.previous;
        }
    }

    BucketType* m_buckets { nullptr };

    [[no_unique_address]] CollectionDataType m_collection_data;
    size_t m_size { 0 };
    size_t m_capacity { 0 };
    size_t m_deleted_count { 0 };
};
}

using AK::HashTable;
using AK::OrderedHashTable;