summaryrefslogtreecommitdiff
path: root/AK/FloatingPointStringConversions.cpp
blob: 6da1981249cb5c9b6b54aaca6e05342a8f1cf492 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
/*
 * Copyright (c) 2022, David Tuin <davidot@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/CharacterTypes.h>
#include <AK/FloatingPointStringConversions.h>
#include <AK/Format.h>
#include <AK/ScopeGuard.h>
#include <AK/StringView.h>
#include <AK/UFixedBigInt.h>
#include <AK/UFixedBigIntDivision.h>

namespace AK {

// This entire algorithm is an implementation of the paper: Number Parsing at a Gigabyte per Second
// by Daniel Lemire, available at https://arxiv.org/abs/2101.11408 and an implementation
// at https://github.com/fastfloat/fast_float
// There is also a perhaps more easily understandable explanation
// at https://nigeltao.github.io/blog/2020/eisel-lemire.html

template<typename T>
concept ParseableFloatingPoint = IsFloatingPoint<T> && (sizeof(T) == sizeof(u32) || sizeof(T) == sizeof(u64));

template<ParseableFloatingPoint T>
struct FloatingPointInfo {
    static_assert(sizeof(T) == sizeof(u64) || sizeof(T) == sizeof(u32));
    using SameSizeUnsigned = Conditional<sizeof(T) == sizeof(u64), u64, u32>;

    // Implementing just this gives all the other bit sizes and mask immediately.
    static constexpr inline i32 mantissa_bits()
    {
        if constexpr (sizeof(T) == sizeof(u64))
            return 52;

        return 23;
    }

    static constexpr inline i32 exponent_bits()
    {
        return sizeof(T) * 8u - 1u - mantissa_bits();
    }

    static constexpr inline i32 exponent_bias()
    {
        return (1 << (exponent_bits() - 1)) - 1;
    }

    static constexpr inline i32 minimum_exponent()
    {
        return -exponent_bias();
    }

    static constexpr inline i32 infinity_exponent()
    {
        static_assert(exponent_bits() < 31);
        return (1 << exponent_bits()) - 1;
    }

    static constexpr inline i32 sign_bit_index()
    {
        return sizeof(T) * 8 - 1;
    }

    static constexpr inline SameSizeUnsigned sign_mask()
    {
        return SameSizeUnsigned { 1 } << sign_bit_index();
    }

    static constexpr inline SameSizeUnsigned mantissa_mask()
    {
        return (SameSizeUnsigned { 1 } << mantissa_bits()) - 1;
    }

    static constexpr inline SameSizeUnsigned exponent_mask()
    {
        return SameSizeUnsigned { infinity_exponent() } << mantissa_bits();
    }

    static constexpr inline i32 max_exponent_round_to_even()
    {
        if constexpr (sizeof(T) == sizeof(u64))
            return 23;

        return 10;
    }

    static constexpr inline i32 min_exponent_round_to_even()
    {
        if constexpr (sizeof(T) == sizeof(u64))
            return -4;

        return -17;
    }

    static constexpr inline size_t max_possible_digits_needed_for_parsing()
    {
        if constexpr (sizeof(T) == sizeof(u64))
            return 769;

        return 114;
    }

    static constexpr inline i32 max_power_of_10()
    {
        if constexpr (sizeof(T) == sizeof(u64))
            return 308;

        return 38;
    }

    static constexpr inline i32 min_power_of_10()
    {
        // Closest double value to zero is xe-324 and since we have at most 19 digits
        // we know that -324 -19 = -343 so exponent below that must be zero (for double)
        if constexpr (sizeof(T) == sizeof(u64))
            return -342;

        return -65;
    }

    static constexpr inline i32 max_exact_power_of_10()
    {
        // These are the largest power of 10 representable in T
        // So all powers of 10*i less than or equal to this should be the exact
        // values, be careful as they can be above "safe integer" limits.

        if constexpr (sizeof(T) == sizeof(u64))
            return 22;

        return 10;
    }

    static constexpr inline T power_of_ten(i32 exponent)
    {
        VERIFY(exponent <= max_exact_power_of_10());
        VERIFY(exponent >= 0);
        return m_powers_of_ten_stored[exponent];
    }

    template<u32 MaxPower>
    static constexpr inline Array<T, MaxPower + 1> compute_powers_of_ten()
    {
        // All these values are guaranteed to be exact all powers of MaxPower is the
        Array<T, MaxPower + 1> values {};

        values[0] = T(1.0);
        T ten = T(10.);

        for (u32 i = 1; i <= MaxPower; ++i)
            values[i] = values[i - 1] * ten;

        return values;
    }

    static constexpr auto m_powers_of_ten_stored = compute_powers_of_ten<max_exact_power_of_10()>();
};

template<typename T>
using BitSizedUnsignedForFloatingPoint = typename FloatingPointInfo<T>::SameSizeUnsigned;

struct BasicParseResult {
    u64 mantissa = 0;
    i64 exponent = 0;
    bool valid = false;
    bool negative = false;
    bool more_than_19_digits_with_overflow = false;
    char const* last_parsed { nullptr };
    StringView whole_part;
    StringView fractional_part;
};

static constexpr auto max_representable_power_of_ten_in_u64 = 19;
static_assert(1e19 <= static_cast<double>(NumericLimits<u64>::max()));
static_assert(1e20 >= static_cast<double>(NumericLimits<u64>::max()));

#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#    error Float parsing currently assumes little endian, this fact is only used in fast parsing of 8 digits at a time \
           you _should_ only need to change read eight_digits to make this big endian compatible.
#endif
constexpr u64 read_eight_digits(char const* string)
{
    u64 val;
    __builtin_memcpy(&val, string, sizeof(val));
    return val;
}

constexpr static bool has_eight_digits(u64 value)
{
    // The ascii digits 0-9 are hex 0x30 - 0x39

    // If x is within that range then y := x + 0x46 is 0x76 to 0x7f
    //    z := x - 0x30 is 0x00 - 0x09
    //    y | z = 0x7t where t is in the range 0 - f so doing & 0x80 gives 0

    // However if a character x is below 0x30 then x - 0x30 underflows setting
    // the 0x80 bit of the next digit meaning & 0x80 will never be 0.

    // Similarly if a character x is above 0x39 then x + 0x46 gives at least
    // 0x80 thus & 0x80 will not be zero.

    return (((value + 0x4646464646464646) | (value - 0x3030303030303030)) & 0x8080808080808080) == 0;
}

constexpr static u32 eight_digits_to_value(u64 value)
{
    // THIS DOES ABSOLUTELY ASSUME has_eight_digits is true

    // This trick is based on https://johnnylee-sde.github.io/Fast-numeric-string-to-int/
    // FIXME: fast_float uses a slightly different version, but that is far harder
    //        to understand and does not seem to improve performance substantially.
    //        See https://github.com/fastfloat/fast_float/pull/28

    // First convert the digits to their respectively numbers (0x30 -> 0x00 etc.)
    value -= 0x3030303030303030;

    // Because of little endian the first number will in fact be the least significant
    // bits of value i.e. "12345678" -> 0x0807060504030201
    // This means that we need to shift/multiply each digit with 8 - the byte it is in
    // So the eight need to go down, and the 01 need to be multiplied with 10000000

    // We effectively multiply by 10 and then shift those values to the right (2^8 = 256)
    // We then shift the values back down, this leads to 4 digits pairs in the 2 byte parts
    // The values between are "garbage" which we will ignore
    value = (value * (256 * 10 + 1)) >> 8;
    // So with our example this gives 0x$$4e$$38$$22$$0c, where $$ is garbage/ignored
    // In decimal this gives              78  56  34  12

    // Now we keep performing the same trick twice more
    // First * 100 and shift of 16 (2^16 = 65536) and then shift back
    value = ((value & 0x00FF00FF00FF00FF) * (65536 * 100 + 1)) >> 16;

    // Again with our example this gives 0x$$$$162e$$$$04d2
    //                                         5678    1234

    // And finally with * 10000 and shift of 32 (2^32 = 4294967296)
    value = ((value & 0x0000FFFF0000FFFF) * (4294967296 * 10000 + 1)) >> 32;

    // With the example this gives 0x$$$$$$$$00bc614e
    //                                       12345678
    // Now we just truncate to the lower part
    return u32(value);
}

template<typename IsDoneCallback, typename Has8CharsLeftCallback>
static BasicParseResult parse_numbers(char const* start, IsDoneCallback is_done, Has8CharsLeftCallback has_eight_chars_to_read)
{
    char const* ptr = start;
    BasicParseResult result {};

    if (start == nullptr || is_done(ptr))
        return result;

    if (*ptr == '-' || *ptr == '+') {
        result.negative = *ptr == '-';
        ++ptr;

        if (is_done(ptr) || (!is_ascii_digit(*ptr) && *ptr != '.'))
            return result;
    }

    auto const fast_parse_decimal = [&](auto& value) {
        while (has_eight_chars_to_read(ptr) && has_eight_digits(read_eight_digits(ptr))) {
            value = 100'000'000 * value + eight_digits_to_value(read_eight_digits(ptr));
            ptr += 8;
        }

        while (!is_done(ptr) && is_ascii_digit(*ptr)) {
            value = 10 * value + (*ptr - '0');
            ++ptr;
        }
    };

    u64 mantissa = 0;
    auto const* whole_part_start = ptr;
    fast_parse_decimal(mantissa);
    auto const* whole_part_end = ptr;
    auto digits_found = whole_part_end - whole_part_start;
    result.whole_part = StringView(whole_part_start, digits_found);

    i64 exponent = 0;
    auto const* start_of_fractional_part = ptr;
    if (!is_done(ptr) && *ptr == '.') {
        ++ptr;
        ++start_of_fractional_part;
        fast_parse_decimal(mantissa);

        // We parsed x digits after the dot so need to multiply with 10^-x
        exponent = -(ptr - start_of_fractional_part);
    }
    result.fractional_part = StringView(start_of_fractional_part, ptr - start_of_fractional_part);
    digits_found += -exponent;

    // If both the part
    if (digits_found == 0)
        return result;

    i64 explicit_exponent = 0;

    // We do this in a lambda to easily be able to get out of parsing the exponent
    // and resetting the final character read to before the 'e'.
    [&] {
        if (is_done(ptr))
            return;
        if (*ptr != 'e' && *ptr != 'E')
            return;

        auto* pointer_before_e = ptr;
        ArmedScopeGuard reset_ptr { [&] { ptr = pointer_before_e; } };
        ++ptr;

        if (is_done(ptr))
            return;

        bool negative_exponent = false;
        if (*ptr == '-' || *ptr == '+') {
            negative_exponent = *ptr == '-';
            ++ptr;

            if (is_done(ptr))
                return;
        }

        if (!is_ascii_digit(*ptr))
            return;

        // Now we must have an optional sign and at least one digit so we
        // will not reset
        reset_ptr.disarm();

        while (!is_done(ptr) && is_ascii_digit(*ptr)) {
            // A massive exponent is not really a problem as this would
            // require a lot of characters so we would fallback on precise
            // parsing anyway (this is already 268435456 digits or 10 megabytes of digits)
            if (explicit_exponent < 0x10'000'000)
                explicit_exponent = 10 * explicit_exponent + (*ptr - '0');

            ++ptr;
        }

        explicit_exponent = negative_exponent ? -explicit_exponent : explicit_exponent;
        exponent += explicit_exponent;
    }();

    result.valid = true;
    result.last_parsed = ptr;

    if (digits_found > max_representable_power_of_ten_in_u64) {
        // There could be overflow but because we just count the digits it could be leading zeros
        auto const* leading_digit = whole_part_start;
        while (!is_done(leading_digit) && (*leading_digit == '0' || *leading_digit == '.')) {
            if (*leading_digit == '0')
                --digits_found;

            ++leading_digit;
        }

        if (digits_found > max_representable_power_of_ten_in_u64) {
            // FIXME: We just removed leading zeros, we might be able to skip these easily again.
            // If removing the leading zeros does not help we reparse and keep just the significant digits
            result.more_than_19_digits_with_overflow = true;

            mantissa = 0;
            constexpr i64 smallest_nineteen_digit_number = { 1000000000000000000 };
            char const* reparse_ptr = whole_part_start;

            constexpr i64 smallest_eleven_digit_number = { 10000000000 };
            while (mantissa < smallest_eleven_digit_number && (whole_part_end - reparse_ptr) >= 8) {
                mantissa = 100'000'000 * mantissa + eight_digits_to_value(read_eight_digits(reparse_ptr));
                reparse_ptr += 8;
            }

            while (mantissa < smallest_nineteen_digit_number && reparse_ptr != whole_part_end) {
                mantissa = 10 * mantissa + (*reparse_ptr - '0');
                ++reparse_ptr;
            }

            if (mantissa >= smallest_nineteen_digit_number) {
                // We still needed to parse (whole_part_end - reparse_ptr) digits so scale the exponent
                exponent = explicit_exponent + (whole_part_end - reparse_ptr);
            } else {
                reparse_ptr = start_of_fractional_part;
                char const* fractional_end = result.fractional_part.characters_without_null_termination() + result.fractional_part.length();

                while (mantissa < smallest_eleven_digit_number && (fractional_end - reparse_ptr) >= 8) {
                    mantissa = 100'000'000 * mantissa + eight_digits_to_value(read_eight_digits(reparse_ptr));
                    reparse_ptr += 8;
                }

                while (mantissa < smallest_nineteen_digit_number && reparse_ptr != fractional_end) {
                    mantissa = 10 * mantissa + (*reparse_ptr - '0');
                    ++reparse_ptr;
                }

                // Again we might be truncating fractional number so scale the exponent with that
                // However here need to subtract 1 from the exponent for every fractional digit
                exponent = explicit_exponent - (reparse_ptr - start_of_fractional_part);
            }
        }
    }

    result.mantissa = mantissa;
    result.exponent = exponent;
    return result;
}

constexpr static u128 compute_power_of_five(i64 exponent)
{
    constexpr u4096 bit128 = u4096 { 1u } << 127u;
    constexpr u4096 bit129 = u4096 { 1u } << 128u;

    VERIFY(exponent <= 308);
    VERIFY(exponent >= -342);

    if (exponent >= 0) {
        u4096 base { 1u };
        for (auto i = 0u; i < exponent; ++i) {
            base *= 5u;
        }

        while (base < bit128)
            base <<= 1u;
        while (base >= bit129)
            base >>= 1u;

        return u128 { base };
    }

    exponent *= -1;
    if (exponent <= 27) {
        u4096 base { 1u };
        for (auto i = 0u; i < exponent; ++i) {
            base *= 5u;
        }

        auto z = 4096 - base.clz();

        auto b = z + 127;
        u4096 base2 { 1u };
        for (auto i = 0u; i < b; ++i) {
            base2 *= 2u;
        }

        base2 /= base;
        base2 += 1u;

        return u128 { base2 };
    }

    VERIFY(exponent <= 342);
    VERIFY(exponent >= 28);

    u4096 base { 1u };
    for (auto i = 0u; i < exponent; ++i) {
        base *= 5u;
    }

    auto z = 4096 - base.clz();

    auto b = 2 * z + 128;

    u4096 base2 { 1u };
    for (auto i = 0u; i < b; ++i) {
        base2 *= 2u;
    }

    base2 /= base;
    base2 += 1u;

    while (base2 >= bit129)
        base2 >>= 1u;

    return u128 { base2 };
}

static constexpr i64 lowest_exponent = -342;
static constexpr i64 highest_exponent = 308;

constexpr auto pre_compute_table()
{
    // Computing this entire table at compile time is slow and hits constexpr
    // limits, so we just compute a (the simplest) value to make sure the
    // function is used. This table can thus be generated with the function
    // `u128 compute_power_of_five(i64 exponent)` above.
    AK::Array<u128, highest_exponent - lowest_exponent + 1> values = {
        u128 { 0x113faa2906a13b3fULL, 0xeef453d6923bd65aULL },
        u128 { 0x4ac7ca59a424c507ULL, 0x9558b4661b6565f8ULL },
        u128 { 0x5d79bcf00d2df649ULL, 0xbaaee17fa23ebf76ULL },
        u128 { 0xf4d82c2c107973dcULL, 0xe95a99df8ace6f53ULL },
        u128 { 0x79071b9b8a4be869ULL, 0x91d8a02bb6c10594ULL },
        u128 { 0x9748e2826cdee284ULL, 0xb64ec836a47146f9ULL },
        u128 { 0xfd1b1b2308169b25ULL, 0xe3e27a444d8d98b7ULL },
        u128 { 0xfe30f0f5e50e20f7ULL, 0x8e6d8c6ab0787f72ULL },
        u128 { 0xbdbd2d335e51a935ULL, 0xb208ef855c969f4fULL },
        u128 { 0xad2c788035e61382ULL, 0xde8b2b66b3bc4723ULL },
        u128 { 0x4c3bcb5021afcc31ULL, 0x8b16fb203055ac76ULL },
        u128 { 0xdf4abe242a1bbf3dULL, 0xaddcb9e83c6b1793ULL },
        u128 { 0xd71d6dad34a2af0dULL, 0xd953e8624b85dd78ULL },
        u128 { 0x8672648c40e5ad68ULL, 0x87d4713d6f33aa6bULL },
        u128 { 0x680efdaf511f18c2ULL, 0xa9c98d8ccb009506ULL },
        u128 { 0x212bd1b2566def2ULL, 0xd43bf0effdc0ba48ULL },
        u128 { 0x14bb630f7604b57ULL, 0x84a57695fe98746dULL },
        u128 { 0x419ea3bd35385e2dULL, 0xa5ced43b7e3e9188ULL },
        u128 { 0x52064cac828675b9ULL, 0xcf42894a5dce35eaULL },
        u128 { 0x7343efebd1940993ULL, 0x818995ce7aa0e1b2ULL },
        u128 { 0x1014ebe6c5f90bf8ULL, 0xa1ebfb4219491a1fULL },
        u128 { 0xd41a26e077774ef6ULL, 0xca66fa129f9b60a6ULL },
        u128 { 0x8920b098955522b4ULL, 0xfd00b897478238d0ULL },
        u128 { 0x55b46e5f5d5535b0ULL, 0x9e20735e8cb16382ULL },
        u128 { 0xeb2189f734aa831dULL, 0xc5a890362fddbc62ULL },
        u128 { 0xa5e9ec7501d523e4ULL, 0xf712b443bbd52b7bULL },
        u128 { 0x47b233c92125366eULL, 0x9a6bb0aa55653b2dULL },
        u128 { 0x999ec0bb696e840aULL, 0xc1069cd4eabe89f8ULL },
        u128 { 0xc00670ea43ca250dULL, 0xf148440a256e2c76ULL },
        u128 { 0x380406926a5e5728ULL, 0x96cd2a865764dbcaULL },
        u128 { 0xc605083704f5ecf2ULL, 0xbc807527ed3e12bcULL },
        u128 { 0xf7864a44c633682eULL, 0xeba09271e88d976bULL },
        u128 { 0x7ab3ee6afbe0211dULL, 0x93445b8731587ea3ULL },
        u128 { 0x5960ea05bad82964ULL, 0xb8157268fdae9e4cULL },
        u128 { 0x6fb92487298e33bdULL, 0xe61acf033d1a45dfULL },
        u128 { 0xa5d3b6d479f8e056ULL, 0x8fd0c16206306babULL },
        u128 { 0x8f48a4899877186cULL, 0xb3c4f1ba87bc8696ULL },
        u128 { 0x331acdabfe94de87ULL, 0xe0b62e2929aba83cULL },
        u128 { 0x9ff0c08b7f1d0b14ULL, 0x8c71dcd9ba0b4925ULL },
        u128 { 0x7ecf0ae5ee44dd9ULL, 0xaf8e5410288e1b6fULL },
        u128 { 0xc9e82cd9f69d6150ULL, 0xdb71e91432b1a24aULL },
        u128 { 0xbe311c083a225cd2ULL, 0x892731ac9faf056eULL },
        u128 { 0x6dbd630a48aaf406ULL, 0xab70fe17c79ac6caULL },
        u128 { 0x92cbbccdad5b108ULL, 0xd64d3d9db981787dULL },
        u128 { 0x25bbf56008c58ea5ULL, 0x85f0468293f0eb4eULL },
        u128 { 0xaf2af2b80af6f24eULL, 0xa76c582338ed2621ULL },
        u128 { 0x1af5af660db4aee1ULL, 0xd1476e2c07286faaULL },
        u128 { 0x50d98d9fc890ed4dULL, 0x82cca4db847945caULL },
        u128 { 0xe50ff107bab528a0ULL, 0xa37fce126597973cULL },
        u128 { 0x1e53ed49a96272c8ULL, 0xcc5fc196fefd7d0cULL },
        u128 { 0x25e8e89c13bb0f7aULL, 0xff77b1fcbebcdc4fULL },
        u128 { 0x77b191618c54e9acULL, 0x9faacf3df73609b1ULL },
        u128 { 0xd59df5b9ef6a2417ULL, 0xc795830d75038c1dULL },
        u128 { 0x4b0573286b44ad1dULL, 0xf97ae3d0d2446f25ULL },
        u128 { 0x4ee367f9430aec32ULL, 0x9becce62836ac577ULL },
        u128 { 0x229c41f793cda73fULL, 0xc2e801fb244576d5ULL },
        u128 { 0x6b43527578c1110fULL, 0xf3a20279ed56d48aULL },
        u128 { 0x830a13896b78aaa9ULL, 0x9845418c345644d6ULL },
        u128 { 0x23cc986bc656d553ULL, 0xbe5691ef416bd60cULL },
        u128 { 0x2cbfbe86b7ec8aa8ULL, 0xedec366b11c6cb8fULL },
        u128 { 0x7bf7d71432f3d6a9ULL, 0x94b3a202eb1c3f39ULL },
        u128 { 0xdaf5ccd93fb0cc53ULL, 0xb9e08a83a5e34f07ULL },
        u128 { 0xd1b3400f8f9cff68ULL, 0xe858ad248f5c22c9ULL },
        u128 { 0x23100809b9c21fa1ULL, 0x91376c36d99995beULL },
        u128 { 0xabd40a0c2832a78aULL, 0xb58547448ffffb2dULL },
        u128 { 0x16c90c8f323f516cULL, 0xe2e69915b3fff9f9ULL },
        u128 { 0xae3da7d97f6792e3ULL, 0x8dd01fad907ffc3bULL },
        u128 { 0x99cd11cfdf41779cULL, 0xb1442798f49ffb4aULL },
        u128 { 0x40405643d711d583ULL, 0xdd95317f31c7fa1dULL },
        u128 { 0x482835ea666b2572ULL, 0x8a7d3eef7f1cfc52ULL },
        u128 { 0xda3243650005eecfULL, 0xad1c8eab5ee43b66ULL },
        u128 { 0x90bed43e40076a82ULL, 0xd863b256369d4a40ULL },
        u128 { 0x5a7744a6e804a291ULL, 0x873e4f75e2224e68ULL },
        u128 { 0x711515d0a205cb36ULL, 0xa90de3535aaae202ULL },
        u128 { 0xd5a5b44ca873e03ULL, 0xd3515c2831559a83ULL },
        u128 { 0xe858790afe9486c2ULL, 0x8412d9991ed58091ULL },
        u128 { 0x626e974dbe39a872ULL, 0xa5178fff668ae0b6ULL },
        u128 { 0xfb0a3d212dc8128fULL, 0xce5d73ff402d98e3ULL },
        u128 { 0x7ce66634bc9d0b99ULL, 0x80fa687f881c7f8eULL },
        u128 { 0x1c1fffc1ebc44e80ULL, 0xa139029f6a239f72ULL },
        u128 { 0xa327ffb266b56220ULL, 0xc987434744ac874eULL },
        u128 { 0x4bf1ff9f0062baa8ULL, 0xfbe9141915d7a922ULL },
        u128 { 0x6f773fc3603db4a9ULL, 0x9d71ac8fada6c9b5ULL },
        u128 { 0xcb550fb4384d21d3ULL, 0xc4ce17b399107c22ULL },
        u128 { 0x7e2a53a146606a48ULL, 0xf6019da07f549b2bULL },
        u128 { 0x2eda7444cbfc426dULL, 0x99c102844f94e0fbULL },
        u128 { 0xfa911155fefb5308ULL, 0xc0314325637a1939ULL },
        u128 { 0x793555ab7eba27caULL, 0xf03d93eebc589f88ULL },
        u128 { 0x4bc1558b2f3458deULL, 0x96267c7535b763b5ULL },
        u128 { 0x9eb1aaedfb016f16ULL, 0xbbb01b9283253ca2ULL },
        u128 { 0x465e15a979c1cadcULL, 0xea9c227723ee8bcbULL },
        u128 { 0xbfacd89ec191ec9ULL, 0x92a1958a7675175fULL },
        u128 { 0xcef980ec671f667bULL, 0xb749faed14125d36ULL },
        u128 { 0x82b7e12780e7401aULL, 0xe51c79a85916f484ULL },
        u128 { 0xd1b2ecb8b0908810ULL, 0x8f31cc0937ae58d2ULL },
        u128 { 0x861fa7e6dcb4aa15ULL, 0xb2fe3f0b8599ef07ULL },
        u128 { 0x67a791e093e1d49aULL, 0xdfbdcece67006ac9ULL },
        u128 { 0xe0c8bb2c5c6d24e0ULL, 0x8bd6a141006042bdULL },
        u128 { 0x58fae9f773886e18ULL, 0xaecc49914078536dULL },
        u128 { 0xaf39a475506a899eULL, 0xda7f5bf590966848ULL },
        u128 { 0x6d8406c952429603ULL, 0x888f99797a5e012dULL },
        u128 { 0xc8e5087ba6d33b83ULL, 0xaab37fd7d8f58178ULL },
        u128 { 0xfb1e4a9a90880a64ULL, 0xd5605fcdcf32e1d6ULL },
        u128 { 0x5cf2eea09a55067fULL, 0x855c3be0a17fcd26ULL },
        u128 { 0xf42faa48c0ea481eULL, 0xa6b34ad8c9dfc06fULL },
        u128 { 0xf13b94daf124da26ULL, 0xd0601d8efc57b08bULL },
        u128 { 0x76c53d08d6b70858ULL, 0x823c12795db6ce57ULL },
        u128 { 0x54768c4b0c64ca6eULL, 0xa2cb1717b52481edULL },
        u128 { 0xa9942f5dcf7dfd09ULL, 0xcb7ddcdda26da268ULL },
        u128 { 0xd3f93b35435d7c4cULL, 0xfe5d54150b090b02ULL },
        u128 { 0xc47bc5014a1a6dafULL, 0x9efa548d26e5a6e1ULL },
        u128 { 0x359ab6419ca1091bULL, 0xc6b8e9b0709f109aULL },
        u128 { 0xc30163d203c94b62ULL, 0xf867241c8cc6d4c0ULL },
        u128 { 0x79e0de63425dcf1dULL, 0x9b407691d7fc44f8ULL },
        u128 { 0x985915fc12f542e4ULL, 0xc21094364dfb5636ULL },
        u128 { 0x3e6f5b7b17b2939dULL, 0xf294b943e17a2bc4ULL },
        u128 { 0xa705992ceecf9c42ULL, 0x979cf3ca6cec5b5aULL },
        u128 { 0x50c6ff782a838353ULL, 0xbd8430bd08277231ULL },
        u128 { 0xa4f8bf5635246428ULL, 0xece53cec4a314ebdULL },
        u128 { 0x871b7795e136be99ULL, 0x940f4613ae5ed136ULL },
        u128 { 0x28e2557b59846e3fULL, 0xb913179899f68584ULL },
        u128 { 0x331aeada2fe589cfULL, 0xe757dd7ec07426e5ULL },
        u128 { 0x3ff0d2c85def7621ULL, 0x9096ea6f3848984fULL },
        u128 { 0xfed077a756b53a9ULL, 0xb4bca50b065abe63ULL },
        u128 { 0xd3e8495912c62894ULL, 0xe1ebce4dc7f16dfbULL },
        u128 { 0x64712dd7abbbd95cULL, 0x8d3360f09cf6e4bdULL },
        u128 { 0xbd8d794d96aacfb3ULL, 0xb080392cc4349decULL },
        u128 { 0xecf0d7a0fc5583a0ULL, 0xdca04777f541c567ULL },
        u128 { 0xf41686c49db57244ULL, 0x89e42caaf9491b60ULL },
        u128 { 0x311c2875c522ced5ULL, 0xac5d37d5b79b6239ULL },
        u128 { 0x7d633293366b828bULL, 0xd77485cb25823ac7ULL },
        u128 { 0xae5dff9c02033197ULL, 0x86a8d39ef77164bcULL },
        u128 { 0xd9f57f830283fdfcULL, 0xa8530886b54dbdebULL },
        u128 { 0xd072df63c324fd7bULL, 0xd267caa862a12d66ULL },
        u128 { 0x4247cb9e59f71e6dULL, 0x8380dea93da4bc60ULL },
        u128 { 0x52d9be85f074e608ULL, 0xa46116538d0deb78ULL },
        u128 { 0x67902e276c921f8bULL, 0xcd795be870516656ULL },
        u128 { 0xba1cd8a3db53b6ULL, 0x806bd9714632dff6ULL },
        u128 { 0x80e8a40eccd228a4ULL, 0xa086cfcd97bf97f3ULL },
        u128 { 0x6122cd128006b2cdULL, 0xc8a883c0fdaf7df0ULL },
        u128 { 0x796b805720085f81ULL, 0xfad2a4b13d1b5d6cULL },
        u128 { 0xcbe3303674053bb0ULL, 0x9cc3a6eec6311a63ULL },
        u128 { 0xbedbfc4411068a9cULL, 0xc3f490aa77bd60fcULL },
        u128 { 0xee92fb5515482d44ULL, 0xf4f1b4d515acb93bULL },
        u128 { 0x751bdd152d4d1c4aULL, 0x991711052d8bf3c5ULL },
        u128 { 0xd262d45a78a0635dULL, 0xbf5cd54678eef0b6ULL },
        u128 { 0x86fb897116c87c34ULL, 0xef340a98172aace4ULL },
        u128 { 0xd45d35e6ae3d4da0ULL, 0x9580869f0e7aac0eULL },
        u128 { 0x8974836059cca109ULL, 0xbae0a846d2195712ULL },
        u128 { 0x2bd1a438703fc94bULL, 0xe998d258869facd7ULL },
        u128 { 0x7b6306a34627ddcfULL, 0x91ff83775423cc06ULL },
        u128 { 0x1a3bc84c17b1d542ULL, 0xb67f6455292cbf08ULL },
        u128 { 0x20caba5f1d9e4a93ULL, 0xe41f3d6a7377eecaULL },
        u128 { 0x547eb47b7282ee9cULL, 0x8e938662882af53eULL },
        u128 { 0xe99e619a4f23aa43ULL, 0xb23867fb2a35b28dULL },
        u128 { 0x6405fa00e2ec94d4ULL, 0xdec681f9f4c31f31ULL },
        u128 { 0xde83bc408dd3dd04ULL, 0x8b3c113c38f9f37eULL },
        u128 { 0x9624ab50b148d445ULL, 0xae0b158b4738705eULL },
        u128 { 0x3badd624dd9b0957ULL, 0xd98ddaee19068c76ULL },
        u128 { 0xe54ca5d70a80e5d6ULL, 0x87f8a8d4cfa417c9ULL },
        u128 { 0x5e9fcf4ccd211f4cULL, 0xa9f6d30a038d1dbcULL },
        u128 { 0x7647c3200069671fULL, 0xd47487cc8470652bULL },
        u128 { 0x29ecd9f40041e073ULL, 0x84c8d4dfd2c63f3bULL },
        u128 { 0xf468107100525890ULL, 0xa5fb0a17c777cf09ULL },
        u128 { 0x7182148d4066eeb4ULL, 0xcf79cc9db955c2ccULL },
        u128 { 0xc6f14cd848405530ULL, 0x81ac1fe293d599bfULL },
        u128 { 0xb8ada00e5a506a7cULL, 0xa21727db38cb002fULL },
        u128 { 0xa6d90811f0e4851cULL, 0xca9cf1d206fdc03bULL },
        u128 { 0x908f4a166d1da663ULL, 0xfd442e4688bd304aULL },
        u128 { 0x9a598e4e043287feULL, 0x9e4a9cec15763e2eULL },
        u128 { 0x40eff1e1853f29fdULL, 0xc5dd44271ad3cdbaULL },
        u128 { 0xd12bee59e68ef47cULL, 0xf7549530e188c128ULL },
        u128 { 0x82bb74f8301958ceULL, 0x9a94dd3e8cf578b9ULL },
        u128 { 0xe36a52363c1faf01ULL, 0xc13a148e3032d6e7ULL },
        u128 { 0xdc44e6c3cb279ac1ULL, 0xf18899b1bc3f8ca1ULL },
        u128 { 0x29ab103a5ef8c0b9ULL, 0x96f5600f15a7b7e5ULL },
        u128 { 0x7415d448f6b6f0e7ULL, 0xbcb2b812db11a5deULL },
        u128 { 0x111b495b3464ad21ULL, 0xebdf661791d60f56ULL },
        u128 { 0xcab10dd900beec34ULL, 0x936b9fcebb25c995ULL },
        u128 { 0x3d5d514f40eea742ULL, 0xb84687c269ef3bfbULL },
        u128 { 0xcb4a5a3112a5112ULL, 0xe65829b3046b0afaULL },
        u128 { 0x47f0e785eaba72abULL, 0x8ff71a0fe2c2e6dcULL },
        u128 { 0x59ed216765690f56ULL, 0xb3f4e093db73a093ULL },
        u128 { 0x306869c13ec3532cULL, 0xe0f218b8d25088b8ULL },
        u128 { 0x1e414218c73a13fbULL, 0x8c974f7383725573ULL },
        u128 { 0xe5d1929ef90898faULL, 0xafbd2350644eeacfULL },
        u128 { 0xdf45f746b74abf39ULL, 0xdbac6c247d62a583ULL },
        u128 { 0x6b8bba8c328eb783ULL, 0x894bc396ce5da772ULL },
        u128 { 0x66ea92f3f326564ULL, 0xab9eb47c81f5114fULL },
        u128 { 0xc80a537b0efefebdULL, 0xd686619ba27255a2ULL },
        u128 { 0xbd06742ce95f5f36ULL, 0x8613fd0145877585ULL },
        u128 { 0x2c48113823b73704ULL, 0xa798fc4196e952e7ULL },
        u128 { 0xf75a15862ca504c5ULL, 0xd17f3b51fca3a7a0ULL },
        u128 { 0x9a984d73dbe722fbULL, 0x82ef85133de648c4ULL },
        u128 { 0xc13e60d0d2e0ebbaULL, 0xa3ab66580d5fdaf5ULL },
        u128 { 0x318df905079926a8ULL, 0xcc963fee10b7d1b3ULL },
        u128 { 0xfdf17746497f7052ULL, 0xffbbcfe994e5c61fULL },
        u128 { 0xfeb6ea8bedefa633ULL, 0x9fd561f1fd0f9bd3ULL },
        u128 { 0xfe64a52ee96b8fc0ULL, 0xc7caba6e7c5382c8ULL },
        u128 { 0x3dfdce7aa3c673b0ULL, 0xf9bd690a1b68637bULL },
        u128 { 0x6bea10ca65c084eULL, 0x9c1661a651213e2dULL },
        u128 { 0x486e494fcff30a62ULL, 0xc31bfa0fe5698db8ULL },
        u128 { 0x5a89dba3c3efccfaULL, 0xf3e2f893dec3f126ULL },
        u128 { 0xf89629465a75e01cULL, 0x986ddb5c6b3a76b7ULL },
        u128 { 0xf6bbb397f1135823ULL, 0xbe89523386091465ULL },
        u128 { 0x746aa07ded582e2cULL, 0xee2ba6c0678b597fULL },
        u128 { 0xa8c2a44eb4571cdcULL, 0x94db483840b717efULL },
        u128 { 0x92f34d62616ce413ULL, 0xba121a4650e4ddebULL },
        u128 { 0x77b020baf9c81d17ULL, 0xe896a0d7e51e1566ULL },
        u128 { 0xace1474dc1d122eULL, 0x915e2486ef32cd60ULL },
        u128 { 0xd819992132456baULL, 0xb5b5ada8aaff80b8ULL },
        u128 { 0x10e1fff697ed6c69ULL, 0xe3231912d5bf60e6ULL },
        u128 { 0xca8d3ffa1ef463c1ULL, 0x8df5efabc5979c8fULL },
        u128 { 0xbd308ff8a6b17cb2ULL, 0xb1736b96b6fd83b3ULL },
        u128 { 0xac7cb3f6d05ddbdeULL, 0xddd0467c64bce4a0ULL },
        u128 { 0x6bcdf07a423aa96bULL, 0x8aa22c0dbef60ee4ULL },
        u128 { 0x86c16c98d2c953c6ULL, 0xad4ab7112eb3929dULL },
        u128 { 0xe871c7bf077ba8b7ULL, 0xd89d64d57a607744ULL },
        u128 { 0x11471cd764ad4972ULL, 0x87625f056c7c4a8bULL },
        u128 { 0xd598e40d3dd89bcfULL, 0xa93af6c6c79b5d2dULL },
        u128 { 0x4aff1d108d4ec2c3ULL, 0xd389b47879823479ULL },
        u128 { 0xcedf722a585139baULL, 0x843610cb4bf160cbULL },
        u128 { 0xc2974eb4ee658828ULL, 0xa54394fe1eedb8feULL },
        u128 { 0x733d226229feea32ULL, 0xce947a3da6a9273eULL },
        u128 { 0x806357d5a3f525fULL, 0x811ccc668829b887ULL },
        u128 { 0xca07c2dcb0cf26f7ULL, 0xa163ff802a3426a8ULL },
        u128 { 0xfc89b393dd02f0b5ULL, 0xc9bcff6034c13052ULL },
        u128 { 0xbbac2078d443ace2ULL, 0xfc2c3f3841f17c67ULL },
        u128 { 0xd54b944b84aa4c0dULL, 0x9d9ba7832936edc0ULL },
        u128 { 0xa9e795e65d4df11ULL, 0xc5029163f384a931ULL },
        u128 { 0x4d4617b5ff4a16d5ULL, 0xf64335bcf065d37dULL },
        u128 { 0x504bced1bf8e4e45ULL, 0x99ea0196163fa42eULL },
        u128 { 0xe45ec2862f71e1d6ULL, 0xc06481fb9bcf8d39ULL },
        u128 { 0x5d767327bb4e5a4cULL, 0xf07da27a82c37088ULL },
        u128 { 0x3a6a07f8d510f86fULL, 0x964e858c91ba2655ULL },
        u128 { 0x890489f70a55368bULL, 0xbbe226efb628afeaULL },
        u128 { 0x2b45ac74ccea842eULL, 0xeadab0aba3b2dbe5ULL },
        u128 { 0x3b0b8bc90012929dULL, 0x92c8ae6b464fc96fULL },
        u128 { 0x9ce6ebb40173744ULL, 0xb77ada0617e3bbcbULL },
        u128 { 0xcc420a6a101d0515ULL, 0xe55990879ddcaabdULL },
        u128 { 0x9fa946824a12232dULL, 0x8f57fa54c2a9eab6ULL },
        u128 { 0x47939822dc96abf9ULL, 0xb32df8e9f3546564ULL },
        u128 { 0x59787e2b93bc56f7ULL, 0xdff9772470297ebdULL },
        u128 { 0x57eb4edb3c55b65aULL, 0x8bfbea76c619ef36ULL },
        u128 { 0xede622920b6b23f1ULL, 0xaefae51477a06b03ULL },
        u128 { 0xe95fab368e45ecedULL, 0xdab99e59958885c4ULL },
        u128 { 0x11dbcb0218ebb414ULL, 0x88b402f7fd75539bULL },
        u128 { 0xd652bdc29f26a119ULL, 0xaae103b5fcd2a881ULL },
        u128 { 0x4be76d3346f0495fULL, 0xd59944a37c0752a2ULL },
        u128 { 0x6f70a4400c562ddbULL, 0x857fcae62d8493a5ULL },
        u128 { 0xcb4ccd500f6bb952ULL, 0xa6dfbd9fb8e5b88eULL },
        u128 { 0x7e2000a41346a7a7ULL, 0xd097ad07a71f26b2ULL },
        u128 { 0x8ed400668c0c28c8ULL, 0x825ecc24c873782fULL },
        u128 { 0x728900802f0f32faULL, 0xa2f67f2dfa90563bULL },
        u128 { 0x4f2b40a03ad2ffb9ULL, 0xcbb41ef979346bcaULL },
        u128 { 0xe2f610c84987bfa8ULL, 0xfea126b7d78186bcULL },
        u128 { 0xdd9ca7d2df4d7c9ULL, 0x9f24b832e6b0f436ULL },
        u128 { 0x91503d1c79720dbbULL, 0xc6ede63fa05d3143ULL },
        u128 { 0x75a44c6397ce912aULL, 0xf8a95fcf88747d94ULL },
        u128 { 0xc986afbe3ee11abaULL, 0x9b69dbe1b548ce7cULL },
        u128 { 0xfbe85badce996168ULL, 0xc24452da229b021bULL },
        u128 { 0xfae27299423fb9c3ULL, 0xf2d56790ab41c2a2ULL },
        u128 { 0xdccd879fc967d41aULL, 0x97c560ba6b0919a5ULL },
        u128 { 0x5400e987bbc1c920ULL, 0xbdb6b8e905cb600fULL },
        u128 { 0x290123e9aab23b68ULL, 0xed246723473e3813ULL },
        u128 { 0xf9a0b6720aaf6521ULL, 0x9436c0760c86e30bULL },
        u128 { 0xf808e40e8d5b3e69ULL, 0xb94470938fa89bceULL },
        u128 { 0xb60b1d1230b20e04ULL, 0xe7958cb87392c2c2ULL },
        u128 { 0xb1c6f22b5e6f48c2ULL, 0x90bd77f3483bb9b9ULL },
        u128 { 0x1e38aeb6360b1af3ULL, 0xb4ecd5f01a4aa828ULL },
        u128 { 0x25c6da63c38de1b0ULL, 0xe2280b6c20dd5232ULL },
        u128 { 0x579c487e5a38ad0eULL, 0x8d590723948a535fULL },
        u128 { 0x2d835a9df0c6d851ULL, 0xb0af48ec79ace837ULL },
        u128 { 0xf8e431456cf88e65ULL, 0xdcdb1b2798182244ULL },
        u128 { 0x1b8e9ecb641b58ffULL, 0x8a08f0f8bf0f156bULL },
        u128 { 0xe272467e3d222f3fULL, 0xac8b2d36eed2dac5ULL },
        u128 { 0x5b0ed81dcc6abb0fULL, 0xd7adf884aa879177ULL },
        u128 { 0x98e947129fc2b4e9ULL, 0x86ccbb52ea94baeaULL },
        u128 { 0x3f2398d747b36224ULL, 0xa87fea27a539e9a5ULL },
        u128 { 0x8eec7f0d19a03aadULL, 0xd29fe4b18e88640eULL },
        u128 { 0x1953cf68300424acULL, 0x83a3eeeef9153e89ULL },
        u128 { 0x5fa8c3423c052dd7ULL, 0xa48ceaaab75a8e2bULL },
        u128 { 0x3792f412cb06794dULL, 0xcdb02555653131b6ULL },
        u128 { 0xe2bbd88bbee40bd0ULL, 0x808e17555f3ebf11ULL },
        u128 { 0x5b6aceaeae9d0ec4ULL, 0xa0b19d2ab70e6ed6ULL },
        u128 { 0xf245825a5a445275ULL, 0xc8de047564d20a8bULL },
        u128 { 0xeed6e2f0f0d56712ULL, 0xfb158592be068d2eULL },
        u128 { 0x55464dd69685606bULL, 0x9ced737bb6c4183dULL },
        u128 { 0xaa97e14c3c26b886ULL, 0xc428d05aa4751e4cULL },
        u128 { 0xd53dd99f4b3066a8ULL, 0xf53304714d9265dfULL },
        u128 { 0xe546a8038efe4029ULL, 0x993fe2c6d07b7fabULL },
        u128 { 0xde98520472bdd033ULL, 0xbf8fdb78849a5f96ULL },
        u128 { 0x963e66858f6d4440ULL, 0xef73d256a5c0f77cULL },
        u128 { 0xdde7001379a44aa8ULL, 0x95a8637627989aadULL },
        u128 { 0x5560c018580d5d52ULL, 0xbb127c53b17ec159ULL },
        u128 { 0xaab8f01e6e10b4a6ULL, 0xe9d71b689dde71afULL },
        u128 { 0xcab3961304ca70e8ULL, 0x9226712162ab070dULL },
        u128 { 0x3d607b97c5fd0d22ULL, 0xb6b00d69bb55c8d1ULL },
        u128 { 0x8cb89a7db77c506aULL, 0xe45c10c42a2b3b05ULL },
        u128 { 0x77f3608e92adb242ULL, 0x8eb98a7a9a5b04e3ULL },
        u128 { 0x55f038b237591ed3ULL, 0xb267ed1940f1c61cULL },
        u128 { 0x6b6c46dec52f6688ULL, 0xdf01e85f912e37a3ULL },
        u128 { 0x2323ac4b3b3da015ULL, 0x8b61313bbabce2c6ULL },
        u128 { 0xabec975e0a0d081aULL, 0xae397d8aa96c1b77ULL },
        u128 { 0x96e7bd358c904a21ULL, 0xd9c7dced53c72255ULL },
        u128 { 0x7e50d64177da2e54ULL, 0x881cea14545c7575ULL },
        u128 { 0xdde50bd1d5d0b9e9ULL, 0xaa242499697392d2ULL },
        u128 { 0x955e4ec64b44e864ULL, 0xd4ad2dbfc3d07787ULL },
        u128 { 0xbd5af13bef0b113eULL, 0x84ec3c97da624ab4ULL },
        u128 { 0xecb1ad8aeacdd58eULL, 0xa6274bbdd0fadd61ULL },
        u128 { 0x67de18eda5814af2ULL, 0xcfb11ead453994baULL },
        u128 { 0x80eacf948770ced7ULL, 0x81ceb32c4b43fcf4ULL },
        u128 { 0xa1258379a94d028dULL, 0xa2425ff75e14fc31ULL },
        u128 { 0x96ee45813a04330ULL, 0xcad2f7f5359a3b3eULL },
        u128 { 0x8bca9d6e188853fcULL, 0xfd87b5f28300ca0dULL },
        u128 { 0x775ea264cf55347eULL, 0x9e74d1b791e07e48ULL },
        u128 { 0x95364afe032a819eULL, 0xc612062576589ddaULL },
        u128 { 0x3a83ddbd83f52205ULL, 0xf79687aed3eec551ULL },
        u128 { 0xc4926a9672793543ULL, 0x9abe14cd44753b52ULL },
        u128 { 0x75b7053c0f178294ULL, 0xc16d9a0095928a27ULL },
        u128 { 0x5324c68b12dd6339ULL, 0xf1c90080baf72cb1ULL },
        u128 { 0xd3f6fc16ebca5e04ULL, 0x971da05074da7beeULL },
        u128 { 0x88f4bb1ca6bcf585ULL, 0xbce5086492111aeaULL },
        u128 { 0x2b31e9e3d06c32e6ULL, 0xec1e4a7db69561a5ULL },
        u128 { 0x3aff322e62439fd0ULL, 0x9392ee8e921d5d07ULL },
        u128 { 0x9befeb9fad487c3ULL, 0xb877aa3236a4b449ULL },
        u128 { 0x4c2ebe687989a9b4ULL, 0xe69594bec44de15bULL },
        u128 { 0xf9d37014bf60a11ULL, 0x901d7cf73ab0acd9ULL },
        u128 { 0x538484c19ef38c95ULL, 0xb424dc35095cd80fULL },
        u128 { 0x2865a5f206b06fbaULL, 0xe12e13424bb40e13ULL },
        u128 { 0xf93f87b7442e45d4ULL, 0x8cbccc096f5088cbULL },
        u128 { 0xf78f69a51539d749ULL, 0xafebff0bcb24aafeULL },
        u128 { 0xb573440e5a884d1cULL, 0xdbe6fecebdedd5beULL },
        u128 { 0x31680a88f8953031ULL, 0x89705f4136b4a597ULL },
        u128 { 0xfdc20d2b36ba7c3eULL, 0xabcc77118461cefcULL },
        u128 { 0x3d32907604691b4dULL, 0xd6bf94d5e57a42bcULL },
        u128 { 0xa63f9a49c2c1b110ULL, 0x8637bd05af6c69b5ULL },
        u128 { 0xfcf80dc33721d54ULL, 0xa7c5ac471b478423ULL },
        u128 { 0xd3c36113404ea4a9ULL, 0xd1b71758e219652bULL },
        u128 { 0x645a1cac083126eaULL, 0x83126e978d4fdf3bULL },
        u128 { 0x3d70a3d70a3d70a4ULL, 0xa3d70a3d70a3d70aULL },
        u128 { 0xcccccccccccccccdULL, 0xccccccccccccccccULL },
        compute_power_of_five(0),
        u128 { 0x0ULL, 0xa000000000000000ULL },
        u128 { 0x0ULL, 0xc800000000000000ULL },
        u128 { 0x0ULL, 0xfa00000000000000ULL },
        u128 { 0x0ULL, 0x9c40000000000000ULL },
        u128 { 0x0ULL, 0xc350000000000000ULL },
        u128 { 0x0ULL, 0xf424000000000000ULL },
        u128 { 0x0ULL, 0x9896800000000000ULL },
        u128 { 0x0ULL, 0xbebc200000000000ULL },
        u128 { 0x0ULL, 0xee6b280000000000ULL },
        u128 { 0x0ULL, 0x9502f90000000000ULL },
        u128 { 0x0ULL, 0xba43b74000000000ULL },
        u128 { 0x0ULL, 0xe8d4a51000000000ULL },
        u128 { 0x0ULL, 0x9184e72a00000000ULL },
        u128 { 0x0ULL, 0xb5e620f480000000ULL },
        u128 { 0x0ULL, 0xe35fa931a0000000ULL },
        u128 { 0x0ULL, 0x8e1bc9bf04000000ULL },
        u128 { 0x0ULL, 0xb1a2bc2ec5000000ULL },
        u128 { 0x0ULL, 0xde0b6b3a76400000ULL },
        u128 { 0x0ULL, 0x8ac7230489e80000ULL },
        u128 { 0x0ULL, 0xad78ebc5ac620000ULL },
        u128 { 0x0ULL, 0xd8d726b7177a8000ULL },
        u128 { 0x0ULL, 0x878678326eac9000ULL },
        u128 { 0x0ULL, 0xa968163f0a57b400ULL },
        u128 { 0x0ULL, 0xd3c21bcecceda100ULL },
        u128 { 0x0ULL, 0x84595161401484a0ULL },
        u128 { 0x0ULL, 0xa56fa5b99019a5c8ULL },
        u128 { 0x0ULL, 0xcecb8f27f4200f3aULL },
        u128 { 0x4000000000000000ULL, 0x813f3978f8940984ULL },
        u128 { 0x5000000000000000ULL, 0xa18f07d736b90be5ULL },
        u128 { 0xa400000000000000ULL, 0xc9f2c9cd04674edeULL },
        u128 { 0x4d00000000000000ULL, 0xfc6f7c4045812296ULL },
        u128 { 0xf020000000000000ULL, 0x9dc5ada82b70b59dULL },
        u128 { 0x6c28000000000000ULL, 0xc5371912364ce305ULL },
        u128 { 0xc732000000000000ULL, 0xf684df56c3e01bc6ULL },
        u128 { 0x3c7f400000000000ULL, 0x9a130b963a6c115cULL },
        u128 { 0x4b9f100000000000ULL, 0xc097ce7bc90715b3ULL },
        u128 { 0x1e86d40000000000ULL, 0xf0bdc21abb48db20ULL },
        u128 { 0x1314448000000000ULL, 0x96769950b50d88f4ULL },
        u128 { 0x17d955a000000000ULL, 0xbc143fa4e250eb31ULL },
        u128 { 0x5dcfab0800000000ULL, 0xeb194f8e1ae525fdULL },
        u128 { 0x5aa1cae500000000ULL, 0x92efd1b8d0cf37beULL },
        u128 { 0xf14a3d9e40000000ULL, 0xb7abc627050305adULL },
        u128 { 0x6d9ccd05d0000000ULL, 0xe596b7b0c643c719ULL },
        u128 { 0xe4820023a2000000ULL, 0x8f7e32ce7bea5c6fULL },
        u128 { 0xdda2802c8a800000ULL, 0xb35dbf821ae4f38bULL },
        u128 { 0xd50b2037ad200000ULL, 0xe0352f62a19e306eULL },
        u128 { 0x4526f422cc340000ULL, 0x8c213d9da502de45ULL },
        u128 { 0x9670b12b7f410000ULL, 0xaf298d050e4395d6ULL },
        u128 { 0x3c0cdd765f114000ULL, 0xdaf3f04651d47b4cULL },
        u128 { 0xa5880a69fb6ac800ULL, 0x88d8762bf324cd0fULL },
        u128 { 0x8eea0d047a457a00ULL, 0xab0e93b6efee0053ULL },
        u128 { 0x72a4904598d6d880ULL, 0xd5d238a4abe98068ULL },
        u128 { 0x47a6da2b7f864750ULL, 0x85a36366eb71f041ULL },
        u128 { 0x999090b65f67d924ULL, 0xa70c3c40a64e6c51ULL },
        u128 { 0xfff4b4e3f741cf6dULL, 0xd0cf4b50cfe20765ULL },
        u128 { 0xbff8f10e7a8921a4ULL, 0x82818f1281ed449fULL },
        u128 { 0xaff72d52192b6a0dULL, 0xa321f2d7226895c7ULL },
        u128 { 0x9bf4f8a69f764490ULL, 0xcbea6f8ceb02bb39ULL },
        u128 { 0x2f236d04753d5b4ULL, 0xfee50b7025c36a08ULL },
        u128 { 0x1d762422c946590ULL, 0x9f4f2726179a2245ULL },
        u128 { 0x424d3ad2b7b97ef5ULL, 0xc722f0ef9d80aad6ULL },
        u128 { 0xd2e0898765a7deb2ULL, 0xf8ebad2b84e0d58bULL },
        u128 { 0x63cc55f49f88eb2fULL, 0x9b934c3b330c8577ULL },
        u128 { 0x3cbf6b71c76b25fbULL, 0xc2781f49ffcfa6d5ULL },
        u128 { 0x8bef464e3945ef7aULL, 0xf316271c7fc3908aULL },
        u128 { 0x97758bf0e3cbb5acULL, 0x97edd871cfda3a56ULL },
        u128 { 0x3d52eeed1cbea317ULL, 0xbde94e8e43d0c8ecULL },
        u128 { 0x4ca7aaa863ee4bddULL, 0xed63a231d4c4fb27ULL },
        u128 { 0x8fe8caa93e74ef6aULL, 0x945e455f24fb1cf8ULL },
        u128 { 0xb3e2fd538e122b44ULL, 0xb975d6b6ee39e436ULL },
        u128 { 0x60dbbca87196b616ULL, 0xe7d34c64a9c85d44ULL },
        u128 { 0xbc8955e946fe31cdULL, 0x90e40fbeea1d3a4aULL },
        u128 { 0x6babab6398bdbe41ULL, 0xb51d13aea4a488ddULL },
        u128 { 0xc696963c7eed2dd1ULL, 0xe264589a4dcdab14ULL },
        u128 { 0xfc1e1de5cf543ca2ULL, 0x8d7eb76070a08aecULL },
        u128 { 0x3b25a55f43294bcbULL, 0xb0de65388cc8ada8ULL },
        u128 { 0x49ef0eb713f39ebeULL, 0xdd15fe86affad912ULL },
        u128 { 0x6e3569326c784337ULL, 0x8a2dbf142dfcc7abULL },
        u128 { 0x49c2c37f07965404ULL, 0xacb92ed9397bf996ULL },
        u128 { 0xdc33745ec97be906ULL, 0xd7e77a8f87daf7fbULL },
        u128 { 0x69a028bb3ded71a3ULL, 0x86f0ac99b4e8dafdULL },
        u128 { 0xc40832ea0d68ce0cULL, 0xa8acd7c0222311bcULL },
        u128 { 0xf50a3fa490c30190ULL, 0xd2d80db02aabd62bULL },
        u128 { 0x792667c6da79e0faULL, 0x83c7088e1aab65dbULL },
        u128 { 0x577001b891185938ULL, 0xa4b8cab1a1563f52ULL },
        u128 { 0xed4c0226b55e6f86ULL, 0xcde6fd5e09abcf26ULL },
        u128 { 0x544f8158315b05b4ULL, 0x80b05e5ac60b6178ULL },
        u128 { 0x696361ae3db1c721ULL, 0xa0dc75f1778e39d6ULL },
        u128 { 0x3bc3a19cd1e38e9ULL, 0xc913936dd571c84cULL },
        u128 { 0x4ab48a04065c723ULL, 0xfb5878494ace3a5fULL },
        u128 { 0x62eb0d64283f9c76ULL, 0x9d174b2dcec0e47bULL },
        u128 { 0x3ba5d0bd324f8394ULL, 0xc45d1df942711d9aULL },
        u128 { 0xca8f44ec7ee36479ULL, 0xf5746577930d6500ULL },
        u128 { 0x7e998b13cf4e1ecbULL, 0x9968bf6abbe85f20ULL },
        u128 { 0x9e3fedd8c321a67eULL, 0xbfc2ef456ae276e8ULL },
        u128 { 0xc5cfe94ef3ea101eULL, 0xefb3ab16c59b14a2ULL },
        u128 { 0xbba1f1d158724a12ULL, 0x95d04aee3b80ece5ULL },
        u128 { 0x2a8a6e45ae8edc97ULL, 0xbb445da9ca61281fULL },
        u128 { 0xf52d09d71a3293bdULL, 0xea1575143cf97226ULL },
        u128 { 0x593c2626705f9c56ULL, 0x924d692ca61be758ULL },
        u128 { 0x6f8b2fb00c77836cULL, 0xb6e0c377cfa2e12eULL },
        u128 { 0xb6dfb9c0f956447ULL, 0xe498f455c38b997aULL },
        u128 { 0x4724bd4189bd5eacULL, 0x8edf98b59a373fecULL },
        u128 { 0x58edec91ec2cb657ULL, 0xb2977ee300c50fe7ULL },
        u128 { 0x2f2967b66737e3edULL, 0xdf3d5e9bc0f653e1ULL },
        u128 { 0xbd79e0d20082ee74ULL, 0x8b865b215899f46cULL },
        u128 { 0xecd8590680a3aa11ULL, 0xae67f1e9aec07187ULL },
        u128 { 0xe80e6f4820cc9495ULL, 0xda01ee641a708de9ULL },
        u128 { 0x3109058d147fdcddULL, 0x884134fe908658b2ULL },
        u128 { 0xbd4b46f0599fd415ULL, 0xaa51823e34a7eedeULL },
        u128 { 0x6c9e18ac7007c91aULL, 0xd4e5e2cdc1d1ea96ULL },
        u128 { 0x3e2cf6bc604ddb0ULL, 0x850fadc09923329eULL },
        u128 { 0x84db8346b786151cULL, 0xa6539930bf6bff45ULL },
        u128 { 0xe612641865679a63ULL, 0xcfe87f7cef46ff16ULL },
        u128 { 0x4fcb7e8f3f60c07eULL, 0x81f14fae158c5f6eULL },
        u128 { 0xe3be5e330f38f09dULL, 0xa26da3999aef7749ULL },
        u128 { 0x5cadf5bfd3072cc5ULL, 0xcb090c8001ab551cULL },
        u128 { 0x73d9732fc7c8f7f6ULL, 0xfdcb4fa002162a63ULL },
        u128 { 0x2867e7fddcdd9afaULL, 0x9e9f11c4014dda7eULL },
        u128 { 0xb281e1fd541501b8ULL, 0xc646d63501a1511dULL },
        u128 { 0x1f225a7ca91a4226ULL, 0xf7d88bc24209a565ULL },
        u128 { 0x3375788de9b06958ULL, 0x9ae757596946075fULL },
        u128 { 0x52d6b1641c83aeULL, 0xc1a12d2fc3978937ULL },
        u128 { 0xc0678c5dbd23a49aULL, 0xf209787bb47d6b84ULL },
        u128 { 0xf840b7ba963646e0ULL, 0x9745eb4d50ce6332ULL },
        u128 { 0xb650e5a93bc3d898ULL, 0xbd176620a501fbffULL },
        u128 { 0xa3e51f138ab4cebeULL, 0xec5d3fa8ce427affULL },
        u128 { 0xc66f336c36b10137ULL, 0x93ba47c980e98cdfULL },
        u128 { 0xb80b0047445d4184ULL, 0xb8a8d9bbe123f017ULL },
        u128 { 0xa60dc059157491e5ULL, 0xe6d3102ad96cec1dULL },
        u128 { 0x87c89837ad68db2fULL, 0x9043ea1ac7e41392ULL },
        u128 { 0x29babe4598c311fbULL, 0xb454e4a179dd1877ULL },
        u128 { 0xf4296dd6fef3d67aULL, 0xe16a1dc9d8545e94ULL },
        u128 { 0x1899e4a65f58660cULL, 0x8ce2529e2734bb1dULL },
        u128 { 0x5ec05dcff72e7f8fULL, 0xb01ae745b101e9e4ULL },
        u128 { 0x76707543f4fa1f73ULL, 0xdc21a1171d42645dULL },
        u128 { 0x6a06494a791c53a8ULL, 0x899504ae72497ebaULL },
        u128 { 0x487db9d17636892ULL, 0xabfa45da0edbde69ULL },
        u128 { 0x45a9d2845d3c42b6ULL, 0xd6f8d7509292d603ULL },
        u128 { 0xb8a2392ba45a9b2ULL, 0x865b86925b9bc5c2ULL },
        u128 { 0x8e6cac7768d7141eULL, 0xa7f26836f282b732ULL },
        u128 { 0x3207d795430cd926ULL, 0xd1ef0244af2364ffULL },
        u128 { 0x7f44e6bd49e807b8ULL, 0x8335616aed761f1fULL },
        u128 { 0x5f16206c9c6209a6ULL, 0xa402b9c5a8d3a6e7ULL },
        u128 { 0x36dba887c37a8c0fULL, 0xcd036837130890a1ULL },
        u128 { 0xc2494954da2c9789ULL, 0x802221226be55a64ULL },
        u128 { 0xf2db9baa10b7bd6cULL, 0xa02aa96b06deb0fdULL },
        u128 { 0x6f92829494e5acc7ULL, 0xc83553c5c8965d3dULL },
        u128 { 0xcb772339ba1f17f9ULL, 0xfa42a8b73abbf48cULL },
        u128 { 0xff2a760414536efbULL, 0x9c69a97284b578d7ULL },
        u128 { 0xfef5138519684abaULL, 0xc38413cf25e2d70dULL },
        u128 { 0x7eb258665fc25d69ULL, 0xf46518c2ef5b8cd1ULL },
        u128 { 0xef2f773ffbd97a61ULL, 0x98bf2f79d5993802ULL },
        u128 { 0xaafb550ffacfd8faULL, 0xbeeefb584aff8603ULL },
        u128 { 0x95ba2a53f983cf38ULL, 0xeeaaba2e5dbf6784ULL },
        u128 { 0xdd945a747bf26183ULL, 0x952ab45cfa97a0b2ULL },
        u128 { 0x94f971119aeef9e4ULL, 0xba756174393d88dfULL },
        u128 { 0x7a37cd5601aab85dULL, 0xe912b9d1478ceb17ULL },
        u128 { 0xac62e055c10ab33aULL, 0x91abb422ccb812eeULL },
        u128 { 0x577b986b314d6009ULL, 0xb616a12b7fe617aaULL },
        u128 { 0xed5a7e85fda0b80bULL, 0xe39c49765fdf9d94ULL },
        u128 { 0x14588f13be847307ULL, 0x8e41ade9fbebc27dULL },
        u128 { 0x596eb2d8ae258fc8ULL, 0xb1d219647ae6b31cULL },
        u128 { 0x6fca5f8ed9aef3bbULL, 0xde469fbd99a05fe3ULL },
        u128 { 0x25de7bb9480d5854ULL, 0x8aec23d680043beeULL },
        u128 { 0xaf561aa79a10ae6aULL, 0xada72ccc20054ae9ULL },
        u128 { 0x1b2ba1518094da04ULL, 0xd910f7ff28069da4ULL },
        u128 { 0x90fb44d2f05d0842ULL, 0x87aa9aff79042286ULL },
        u128 { 0x353a1607ac744a53ULL, 0xa99541bf57452b28ULL },
        u128 { 0x42889b8997915ce8ULL, 0xd3fa922f2d1675f2ULL },
        u128 { 0x69956135febada11ULL, 0x847c9b5d7c2e09b7ULL },
        u128 { 0x43fab9837e699095ULL, 0xa59bc234db398c25ULL },
        u128 { 0x94f967e45e03f4bbULL, 0xcf02b2c21207ef2eULL },
        u128 { 0x1d1be0eebac278f5ULL, 0x8161afb94b44f57dULL },
        u128 { 0x6462d92a69731732ULL, 0xa1ba1ba79e1632dcULL },
        u128 { 0x7d7b8f7503cfdcfeULL, 0xca28a291859bbf93ULL },
        u128 { 0x5cda735244c3d43eULL, 0xfcb2cb35e702af78ULL },
        u128 { 0x3a0888136afa64a7ULL, 0x9defbf01b061adabULL },
        u128 { 0x88aaa1845b8fdd0ULL, 0xc56baec21c7a1916ULL },
        u128 { 0x8aad549e57273d45ULL, 0xf6c69a72a3989f5bULL },
        u128 { 0x36ac54e2f678864bULL, 0x9a3c2087a63f6399ULL },
        u128 { 0x84576a1bb416a7ddULL, 0xc0cb28a98fcf3c7fULL },
        u128 { 0x656d44a2a11c51d5ULL, 0xf0fdf2d3f3c30b9fULL },
        u128 { 0x9f644ae5a4b1b325ULL, 0x969eb7c47859e743ULL },
        u128 { 0x873d5d9f0dde1feeULL, 0xbc4665b596706114ULL },
        u128 { 0xa90cb506d155a7eaULL, 0xeb57ff22fc0c7959ULL },
        u128 { 0x9a7f12442d588f2ULL, 0x9316ff75dd87cbd8ULL },
        u128 { 0xc11ed6d538aeb2fULL, 0xb7dcbf5354e9beceULL },
        u128 { 0x8f1668c8a86da5faULL, 0xe5d3ef282a242e81ULL },
        u128 { 0xf96e017d694487bcULL, 0x8fa475791a569d10ULL },
        u128 { 0x37c981dcc395a9acULL, 0xb38d92d760ec4455ULL },
        u128 { 0x85bbe253f47b1417ULL, 0xe070f78d3927556aULL },
        u128 { 0x93956d7478ccec8eULL, 0x8c469ab843b89562ULL },
        u128 { 0x387ac8d1970027b2ULL, 0xaf58416654a6babbULL },
        u128 { 0x6997b05fcc0319eULL, 0xdb2e51bfe9d0696aULL },
        u128 { 0x441fece3bdf81f03ULL, 0x88fcf317f22241e2ULL },
        u128 { 0xd527e81cad7626c3ULL, 0xab3c2fddeeaad25aULL },
        u128 { 0x8a71e223d8d3b074ULL, 0xd60b3bd56a5586f1ULL },
        u128 { 0xf6872d5667844e49ULL, 0x85c7056562757456ULL },
        u128 { 0xb428f8ac016561dbULL, 0xa738c6bebb12d16cULL },
        u128 { 0xe13336d701beba52ULL, 0xd106f86e69d785c7ULL },
        u128 { 0xecc0024661173473ULL, 0x82a45b450226b39cULL },
        u128 { 0x27f002d7f95d0190ULL, 0xa34d721642b06084ULL },
        u128 { 0x31ec038df7b441f4ULL, 0xcc20ce9bd35c78a5ULL },
        u128 { 0x7e67047175a15271ULL, 0xff290242c83396ceULL },
        u128 { 0xf0062c6e984d386ULL, 0x9f79a169bd203e41ULL },
        u128 { 0x52c07b78a3e60868ULL, 0xc75809c42c684dd1ULL },
        u128 { 0xa7709a56ccdf8a82ULL, 0xf92e0c3537826145ULL },
        u128 { 0x88a66076400bb691ULL, 0x9bbcc7a142b17ccbULL },
        u128 { 0x6acff893d00ea435ULL, 0xc2abf989935ddbfeULL },
        u128 { 0x583f6b8c4124d43ULL, 0xf356f7ebf83552feULL },
        u128 { 0xc3727a337a8b704aULL, 0x98165af37b2153deULL },
        u128 { 0x744f18c0592e4c5cULL, 0xbe1bf1b059e9a8d6ULL },
        u128 { 0x1162def06f79df73ULL, 0xeda2ee1c7064130cULL },
        u128 { 0x8addcb5645ac2ba8ULL, 0x9485d4d1c63e8be7ULL },
        u128 { 0x6d953e2bd7173692ULL, 0xb9a74a0637ce2ee1ULL },
        u128 { 0xc8fa8db6ccdd0437ULL, 0xe8111c87c5c1ba99ULL },
        u128 { 0x1d9c9892400a22a2ULL, 0x910ab1d4db9914a0ULL },
        u128 { 0x2503beb6d00cab4bULL, 0xb54d5e4a127f59c8ULL },
        u128 { 0x2e44ae64840fd61dULL, 0xe2a0b5dc971f303aULL },
        u128 { 0x5ceaecfed289e5d2ULL, 0x8da471a9de737e24ULL },
        u128 { 0x7425a83e872c5f47ULL, 0xb10d8e1456105dadULL },
        u128 { 0xd12f124e28f77719ULL, 0xdd50f1996b947518ULL },
        u128 { 0x82bd6b70d99aaa6fULL, 0x8a5296ffe33cc92fULL },
        u128 { 0x636cc64d1001550bULL, 0xace73cbfdc0bfb7bULL },
        u128 { 0x3c47f7e05401aa4eULL, 0xd8210befd30efa5aULL },
        u128 { 0x65acfaec34810a71ULL, 0x8714a775e3e95c78ULL },
        u128 { 0x7f1839a741a14d0dULL, 0xa8d9d1535ce3b396ULL },
        u128 { 0x1ede48111209a050ULL, 0xd31045a8341ca07cULL },
        u128 { 0x934aed0aab460432ULL, 0x83ea2b892091e44dULL },
        u128 { 0xf81da84d5617853fULL, 0xa4e4b66b68b65d60ULL },
        u128 { 0x36251260ab9d668eULL, 0xce1de40642e3f4b9ULL },
        u128 { 0xc1d72b7c6b426019ULL, 0x80d2ae83e9ce78f3ULL },
        u128 { 0xb24cf65b8612f81fULL, 0xa1075a24e4421730ULL },
        u128 { 0xdee033f26797b627ULL, 0xc94930ae1d529cfcULL },
        u128 { 0x169840ef017da3b1ULL, 0xfb9b7cd9a4a7443cULL },
        u128 { 0x8e1f289560ee864eULL, 0x9d412e0806e88aa5ULL },
        u128 { 0xf1a6f2bab92a27e2ULL, 0xc491798a08a2ad4eULL },
        u128 { 0xae10af696774b1dbULL, 0xf5b5d7ec8acb58a2ULL },
        u128 { 0xacca6da1e0a8ef29ULL, 0x9991a6f3d6bf1765ULL },
        u128 { 0x17fd090a58d32af3ULL, 0xbff610b0cc6edd3fULL },
        u128 { 0xddfc4b4cef07f5b0ULL, 0xeff394dcff8a948eULL },
        u128 { 0x4abdaf101564f98eULL, 0x95f83d0a1fb69cd9ULL },
        u128 { 0x9d6d1ad41abe37f1ULL, 0xbb764c4ca7a4440fULL },
        u128 { 0x84c86189216dc5edULL, 0xea53df5fd18d5513ULL },
        u128 { 0x32fd3cf5b4e49bb4ULL, 0x92746b9be2f8552cULL },
        u128 { 0x3fbc8c33221dc2a1ULL, 0xb7118682dbb66a77ULL },
        u128 { 0xfabaf3feaa5334aULL, 0xe4d5e82392a40515ULL },
        u128 { 0x29cb4d87f2a7400eULL, 0x8f05b1163ba6832dULL },
        u128 { 0x743e20e9ef511012ULL, 0xb2c71d5bca9023f8ULL },
        u128 { 0x914da9246b255416ULL, 0xdf78e4b2bd342cf6ULL },
        u128 { 0x1ad089b6c2f7548eULL, 0x8bab8eefb6409c1aULL },
        u128 { 0xa184ac2473b529b1ULL, 0xae9672aba3d0c320ULL },
        u128 { 0xc9e5d72d90a2741eULL, 0xda3c0f568cc4f3e8ULL },
        u128 { 0x7e2fa67c7a658892ULL, 0x8865899617fb1871ULL },
        u128 { 0xddbb901b98feeab7ULL, 0xaa7eebfb9df9de8dULL },
        u128 { 0x552a74227f3ea565ULL, 0xd51ea6fa85785631ULL },
        u128 { 0xd53a88958f87275fULL, 0x8533285c936b35deULL },
        u128 { 0x8a892abaf368f137ULL, 0xa67ff273b8460356ULL },
        u128 { 0x2d2b7569b0432d85ULL, 0xd01fef10a657842cULL },
        u128 { 0x9c3b29620e29fc73ULL, 0x8213f56a67f6b29bULL },
        u128 { 0x8349f3ba91b47b8fULL, 0xa298f2c501f45f42ULL },
        u128 { 0x241c70a936219a73ULL, 0xcb3f2f7642717713ULL },
        u128 { 0xed238cd383aa0110ULL, 0xfe0efb53d30dd4d7ULL },
        u128 { 0xf4363804324a40aaULL, 0x9ec95d1463e8a506ULL },
        u128 { 0xb143c6053edcd0d5ULL, 0xc67bb4597ce2ce48ULL },
        u128 { 0xdd94b7868e94050aULL, 0xf81aa16fdc1b81daULL },
        u128 { 0xca7cf2b4191c8326ULL, 0x9b10a4e5e9913128ULL },
        u128 { 0xfd1c2f611f63a3f0ULL, 0xc1d4ce1f63f57d72ULL },
        u128 { 0xbc633b39673c8cecULL, 0xf24a01a73cf2dccfULL },
        u128 { 0xd5be0503e085d813ULL, 0x976e41088617ca01ULL },
        u128 { 0x4b2d8644d8a74e18ULL, 0xbd49d14aa79dbc82ULL },
        u128 { 0xddf8e7d60ed1219eULL, 0xec9c459d51852ba2ULL },
        u128 { 0xcabb90e5c942b503ULL, 0x93e1ab8252f33b45ULL },
        u128 { 0x3d6a751f3b936243ULL, 0xb8da1662e7b00a17ULL },
        u128 { 0xcc512670a783ad4ULL, 0xe7109bfba19c0c9dULL },
        u128 { 0x27fb2b80668b24c5ULL, 0x906a617d450187e2ULL },
        u128 { 0xb1f9f660802dedf6ULL, 0xb484f9dc9641e9daULL },
        u128 { 0x5e7873f8a0396973ULL, 0xe1a63853bbd26451ULL },
        u128 { 0xdb0b487b6423e1e8ULL, 0x8d07e33455637eb2ULL },
        u128 { 0x91ce1a9a3d2cda62ULL, 0xb049dc016abc5e5fULL },
        u128 { 0x7641a140cc7810fbULL, 0xdc5c5301c56b75f7ULL },
        u128 { 0xa9e904c87fcb0a9dULL, 0x89b9b3e11b6329baULL },
        u128 { 0x546345fa9fbdcd44ULL, 0xac2820d9623bf429ULL },
        u128 { 0xa97c177947ad4095ULL, 0xd732290fbacaf133ULL },
        u128 { 0x49ed8eabcccc485dULL, 0x867f59a9d4bed6c0ULL },
        u128 { 0x5c68f256bfff5a74ULL, 0xa81f301449ee8c70ULL },
        u128 { 0x73832eec6fff3111ULL, 0xd226fc195c6a2f8cULL },
        u128 { 0xc831fd53c5ff7eabULL, 0x83585d8fd9c25db7ULL },
        u128 { 0xba3e7ca8b77f5e55ULL, 0xa42e74f3d032f525ULL },
        u128 { 0x28ce1bd2e55f35ebULL, 0xcd3a1230c43fb26fULL },
        u128 { 0x7980d163cf5b81b3ULL, 0x80444b5e7aa7cf85ULL },
        u128 { 0xd7e105bcc332621fULL, 0xa0555e361951c366ULL },
        u128 { 0x8dd9472bf3fefaa7ULL, 0xc86ab5c39fa63440ULL },
        u128 { 0xb14f98f6f0feb951ULL, 0xfa856334878fc150ULL },
        u128 { 0x6ed1bf9a569f33d3ULL, 0x9c935e00d4b9d8d2ULL },
        u128 { 0xa862f80ec4700c8ULL, 0xc3b8358109e84f07ULL },
        u128 { 0xcd27bb612758c0faULL, 0xf4a642e14c6262c8ULL },
        u128 { 0x8038d51cb897789cULL, 0x98e7e9cccfbd7dbdULL },
        u128 { 0xe0470a63e6bd56c3ULL, 0xbf21e44003acdd2cULL },
        u128 { 0x1858ccfce06cac74ULL, 0xeeea5d5004981478ULL },
        u128 { 0xf37801e0c43ebc8ULL, 0x95527a5202df0ccbULL },
        u128 { 0xd30560258f54e6baULL, 0xbaa718e68396cffdULL },
        u128 { 0x47c6b82ef32a2069ULL, 0xe950df20247c83fdULL },
        u128 { 0x4cdc331d57fa5441ULL, 0x91d28b7416cdd27eULL },
        u128 { 0xe0133fe4adf8e952ULL, 0xb6472e511c81471dULL },
        u128 { 0x58180fddd97723a6ULL, 0xe3d8f9e563a198e5ULL },
        u128 { 0x570f09eaa7ea7648ULL, 0x8e679c2f5e44ff8fULL },
    };
    return values;
}

static constexpr auto pre_computed_powers_of_five = pre_compute_table();

static constexpr u128 power_of_five(i64 exponent)
{
    return pre_computed_powers_of_five[exponent - lowest_exponent];
}

struct FloatingPointBuilder {
    u64 mantissa = 0;
    // This exponent is power of 2 and with the bias already added.
    i32 exponent = 0;

    static constexpr i32 invalid_exponent_offset = 32768;

    static FloatingPointBuilder zero()
    {
        return { 0, 0 };
    }

    template<typename T>
    static FloatingPointBuilder infinity()
    {
        return { 0, FloatingPointInfo<T>::infinity_exponent() };
    }

    template<typename T>
    static FloatingPointBuilder nan()
    {
        return { 1ull << (FloatingPointInfo<T>::mantissa_bits() - 1), FloatingPointInfo<T>::infinity_exponent() };
    }

    template<typename T>
    static FloatingPointBuilder from_value(T value)
    {
        using BitDetails = FloatingPointInfo<T>;
        auto bits = bit_cast<typename BitDetails::SameSizeUnsigned>(value);
        // we ignore negative

        FloatingPointBuilder result;
        i32 bias = BitDetails::mantissa_bits() + BitDetails::exponent_bias();
        if ((bits & BitDetails::exponent_mask()) == 0) {
            // 0 exponent -> denormal (or zero)
            result.exponent = 1 - bias;
            // Denormal so _DON'T_ add the implicit 1
            result.mantissa = bits & BitDetails::mantissa_mask();
        } else {
            result.exponent = (bits & BitDetails::exponent_mask()) >> BitDetails::mantissa_bits();
            result.exponent -= bias;
            result.mantissa = (bits & BitDetails::mantissa_mask()) | (1ull << BitDetails::mantissa_bits());
        }

        return result;
    }

    template<typename T>
    T to_value(bool is_negative) const
    {
        if constexpr (IsSame<double, T>) {
            VERIFY((mantissa & 0xffe0'0000'0000'0000) == 0);
            VERIFY((mantissa & 0xfff0'0000'0000'0000) == 0 || exponent == 1);
            VERIFY((exponent & ~(0x7ff)) == 0);
        } else {
            static_assert(IsSame<float, T>);
            VERIFY((mantissa & 0xff00'0000) == 0);
            VERIFY((mantissa & 0xff80'0000) == 0 || exponent == 1);
            VERIFY((exponent & ~(0xff)) == 0);
        }

        using BitSizedUnsigened = BitSizedUnsignedForFloatingPoint<T>;

        BitSizedUnsigened raw_bits = mantissa;
        raw_bits |= BitSizedUnsigened(exponent) << FloatingPointInfo<T>::mantissa_bits();
        raw_bits |= BitSizedUnsigened(is_negative) << FloatingPointInfo<T>::sign_bit_index();
        return bit_cast<T>(raw_bits);
    }
};

template<typename T>
static FloatingPointBuilder parse_arbitrarily_long_floating_point(BasicParseResult& result, FloatingPointBuilder initial);

static i32 decimal_exponent_to_binary_exponent(i32 exponent)
{
    return ((((152170 + 65536) * exponent) >> 16) + 63);
}

static u128 multiply(u64 a, u64 b)
{
    return UFixedBigInt<64>(a).wide_multiply(b);
}

template<unsigned Precision>
u128 multiplication_approximation(u64 value, i32 exponent)
{
    auto z = power_of_five(exponent);

    static_assert(Precision < 64);
    constexpr u64 mask = NumericLimits<u64>::max() >> Precision;

    auto lower_result = multiply(z.high(), value);

    if ((lower_result.high() & mask) == mask) {
        auto upper_result = multiply(z.low(), value);
        lower_result += upper_result.high();
    }

    return lower_result;
}

template<typename T>
static FloatingPointBuilder not_enough_precision_binary_to_decimal(i64 exponent, u64 mantissa, int leading_zeros)
{
    using FloatingPointRepr = FloatingPointInfo<T>;
    i32 did_not_have_upper_bit = static_cast<i32>(mantissa >> 63) ^ 1;
    FloatingPointBuilder answer;
    answer.mantissa = mantissa << did_not_have_upper_bit;

    i32 bias = FloatingPointRepr::mantissa_bits() + FloatingPointRepr::exponent_bias();
    answer.exponent = decimal_exponent_to_binary_exponent(static_cast<i32>(exponent)) - leading_zeros - did_not_have_upper_bit - 62 + bias;
    // Make it negative to show we need more precision.
    answer.exponent -= FloatingPointBuilder::invalid_exponent_offset;
    VERIFY(answer.exponent < 0);
    return answer;
}

template<typename T>
static FloatingPointBuilder fallback_binary_to_decimal(u64 mantissa, i64 exponent)
{
    // We should have caught huge exponents already
    VERIFY(exponent >= -400 && exponent <= 400);

    // Perform the initial steps of binary_to_decimal.
    auto w = mantissa;
    auto leading_zeros = count_leading_zeroes(mantissa);
    w <<= leading_zeros;

    auto product = multiplication_approximation<FloatingPointInfo<T>::mantissa_bits() + 3>(w, exponent);

    return not_enough_precision_binary_to_decimal<T>(exponent, product.high(), leading_zeros);
}

template<typename T>
static FloatingPointBuilder binary_to_decimal(u64 mantissa, i64 exponent)
{
    using FloatingPointRepr = FloatingPointInfo<T>;

    if (mantissa == 0 || exponent < FloatingPointRepr::min_power_of_10())
        return FloatingPointBuilder::zero();

    // Max double value which isn't negative is xe308
    if (exponent > FloatingPointRepr::max_power_of_10())
        return FloatingPointBuilder::infinity<T>();

    auto w = mantissa;
    // Normalize the decimal significand w by shifting it so that w โˆˆ [2^63, 2^64)
    auto leading_zeros = count_leading_zeroes(mantissa);
    w <<= leading_zeros;

    // We need at least mantissa bits + 1 for the implicit bit + 1 for the implicit 0 top bit and one extra for rounding
    u128 approximation_of_product_with_power_of_five = multiplication_approximation<FloatingPointRepr::mantissa_bits() + 3>(w, exponent);

    // The paper (and code of fastfloat/fast_float as of writing) mention that the low part
    // of approximation_of_product_with_power_of_five can be 2^64 - 1 here in which case we need more
    // precision if the exponent lies outside of [-27, 55]. However the authors of the paper have
    // shown that this case cannot actually occur. See https://github.com/fastfloat/fast_float/issues/146#issuecomment-1262527329

    u8 upperbit = approximation_of_product_with_power_of_five.high() >> 63;
    auto real_mantissa = approximation_of_product_with_power_of_five.high() >> (upperbit + 64 - FloatingPointRepr::mantissa_bits() - 3);

    // We immediately normalize the exponent to 0 - max else we have to add the bias in most following calculations
    i32 power_of_two_with_bias = decimal_exponent_to_binary_exponent(exponent) - leading_zeros + upperbit + FloatingPointRepr::exponent_bias();

    if (power_of_two_with_bias <= 0) {
        // If the exponent is less than the bias we might have a denormal on our hands
        // A denormal is a float with exponent zero, which means it doesn't have the implicit
        // 1 at the top of the mantissa.

        // If the top bit would be below the bottom of the mantissa we have to round to zero
        if (power_of_two_with_bias <= -63)
            return FloatingPointBuilder::zero();

        // Otherwise, we have to shift the mantissa to be a denormal
        auto s = -power_of_two_with_bias + 1;
        real_mantissa = real_mantissa >> s;

        // And then round ties to even
        real_mantissa += real_mantissa & 1;
        real_mantissa >>= 1;

        // Check for subnormal by checking if the 53th bit of the mantissa it set in which case exponent is 1 not 0
        // It is only a real subnormal if the top bit isn't set
        power_of_two_with_bias = real_mantissa < (1ull << FloatingPointRepr::mantissa_bits()) ? 0 : 1;

        return { real_mantissa, power_of_two_with_bias };
    }

    if (approximation_of_product_with_power_of_five.low() <= 1 && (real_mantissa & 0b11) == 0b01
        && exponent >= FloatingPointRepr::min_exponent_round_to_even()
        && exponent <= FloatingPointRepr::max_exponent_round_to_even()) {
        // If the lowest bit is set but the one above it isn't this is a value exactly halfway
        // between two floating points
        // if (z รท 264 )/m is a power of two then m โ† m โˆ’ 1

        // effectively all discard bits from z.high are 0
        if (approximation_of_product_with_power_of_five.high() == (real_mantissa << (upperbit + 64 - FloatingPointRepr::mantissa_bits() - 3))) {
            real_mantissa &= ~u64(1);
        }
    }

    real_mantissa += real_mantissa & 1;
    real_mantissa >>= 1;

    // If we overflowed the mantissa round up the exponent
    if (real_mantissa >= (2ull << FloatingPointRepr::mantissa_bits())) {
        real_mantissa = 1ull << FloatingPointRepr::mantissa_bits();
        ++power_of_two_with_bias;
    }

    real_mantissa &= ~(1ull << FloatingPointRepr::mantissa_bits());

    // We might have rounded exponent up to infinity
    if (power_of_two_with_bias >= FloatingPointRepr::infinity_exponent())
        return FloatingPointBuilder::infinity<T>();

    return {
        real_mantissa, power_of_two_with_bias
    };
}

static constexpr u64 multiply_with_carry(u64 x, u64 y, u64& carry)
{
    u128 result = (u128 { x } * y) + carry;
    carry = result.high();
    return result.low();
}

static constexpr u64 add_with_overflow(u64 x, u64 y, bool& did_overflow)
{
    u64 value;
    did_overflow = __builtin_add_overflow(x, y, &value);
    return value;
}

class MinimalBigInt {
public:
    MinimalBigInt() = default;
    MinimalBigInt(u64 value)
    {
        append(value);
    }

    static MinimalBigInt from_decimal_floating_point(BasicParseResult const& parse_result, size_t& digits_parsed, size_t max_total_digits)
    {
        size_t current_word_counter = 0;
        // 10**19 is the biggest power of ten which fits in 64 bit
        constexpr size_t max_word_counter = max_representable_power_of_ten_in_u64;

        u64 current_word = 0;

        enum AddDigitResult {
            DidNotHitMaxDigits,
            HitMaxDigits,
        };

        auto does_truncate_non_zero = [](char const* parse_head, char const* parse_end) {
            while (parse_end - parse_head >= 8) {
                static_assert('0' == 0x30);

                if (read_eight_digits(parse_head) != 0x3030303030303030)
                    return true;

                parse_head += 8;
            }

            while (parse_head != parse_end) {
                if (*parse_head != '0')
                    return true;

                ++parse_head;
            }

            return false;
        };

        MinimalBigInt value;
        auto add_digits = [&](StringView digits, bool check_fraction_for_truncation = false) {
            char const* parse_head = digits.characters_without_null_termination();
            char const* parse_end = digits.characters_without_null_termination() + digits.length();

            if (digits_parsed == 0) {
                // Skip all leading zeros as long as we haven't hit a non zero
                while (parse_head != parse_end && *parse_head == '0')
                    ++parse_head;
            }

            while (parse_head != parse_end) {
                while (max_word_counter - current_word_counter >= 8
                    && parse_end - parse_head >= 8
                    && max_total_digits - digits_parsed >= 8) {

                    current_word = current_word * 100'000'000 + eight_digits_to_value(read_eight_digits(parse_head));

                    digits_parsed += 8;
                    current_word_counter += 8;
                    parse_head += 8;
                }

                while (current_word_counter < max_word_counter
                    && parse_head != parse_end
                    && digits_parsed < max_total_digits) {

                    current_word = current_word * 10 + (*parse_head - '0');

                    ++digits_parsed;
                    ++current_word_counter;
                    ++parse_head;
                }

                if (digits_parsed == max_total_digits) {
                    // Check if we are leaving behind any non zero
                    bool truncated = does_truncate_non_zero(parse_head, parse_end);
                    if (auto fraction = parse_result.fractional_part; check_fraction_for_truncation && !fraction.is_empty())
                        truncated = truncated || does_truncate_non_zero(fraction.characters_without_null_termination(), fraction.characters_without_null_termination() + fraction.length());

                    // If we truncated we just pretend there is another 1 after the already parsed digits

                    if (truncated && current_word_counter != max_word_counter) {
                        // If it still fits in the current add it there, this saves a wide multiply
                        current_word = current_word * 10 + 1;
                        ++current_word_counter;
                        truncated = false;
                    }
                    value.add_digits(current_word, current_word_counter);

                    // If it didn't fit just do * 10 + 1
                    if (truncated)
                        value.add_digits(1, 1);

                    return HitMaxDigits;
                } else {
                    value.add_digits(current_word, current_word_counter);
                    current_word = 0;
                    current_word_counter = 0;
                }
            }

            return DidNotHitMaxDigits;
        };

        if (add_digits(parse_result.whole_part, true) == HitMaxDigits)
            return value;

        add_digits(parse_result.fractional_part);

        return value;
    }

    u64 top_64_bits(bool& has_truncated_bits) const
    {
        if (m_used_length == 0)
            return 0;

        // Top word should be non-zero
        VERIFY(m_words[m_used_length - 1] != 0);

        auto leading_zeros = count_leading_zeroes(m_words[m_used_length - 1]);
        if (m_used_length == 1)
            return m_words[0] << leading_zeros;

        for (size_t i = 0; i < m_used_length - 2; i++) {
            if (m_words[i] != 0) {
                has_truncated_bits = true;
                break;
            }
        }

        if (leading_zeros == 0) {
            // Shift of 64+ is undefined so this has to be a separate case
            has_truncated_bits |= m_words[m_used_length - 2] != 0;
            return m_words[m_used_length - 1] << leading_zeros;
        }

        auto bits_from_second = 64 - leading_zeros;
        has_truncated_bits |= (m_words[m_used_length - 2] << leading_zeros) != 0;
        return (m_words[m_used_length - 1] << leading_zeros) | (m_words[m_used_length - 2] >> bits_from_second);
    }

    i32 size_in_bits() const
    {
        if (m_used_length == 0)
            return 0;
        // This is guaranteed to be at most max_size_in_words * 64 so not above i32 max
        return static_cast<i32>(64 * (m_used_length)-count_leading_zeroes(m_words[m_used_length - 1]));
    }

    void multiply_with_power_of_10(u32 exponent)
    {
        multiply_with_power_of_5(exponent);
        multiply_with_power_of_2(exponent);
    }

    void multiply_with_power_of_5(u32 exponent)
    {
        // FIXME: We might be able to store a bigger power of 5 but this would
        //        require a wide multiply, so perhaps using u4096 would be
        //        better to get wide multiply and not duplicate logic.
        static constexpr Array<u64, 28> power_of_5 = {
            1ul,
            5ul,
            25ul,
            125ul,
            625ul,
            3125ul,
            15625ul,
            78125ul,
            390625ul,
            1953125ul,
            9765625ul,
            48828125ul,
            244140625ul,
            1220703125ul,
            6103515625ul,
            30517578125ul,
            152587890625ul,
            762939453125ul,
            3814697265625ul,
            19073486328125ul,
            95367431640625ul,
            476837158203125ul,
            2384185791015625ul,
            11920928955078125ul,
            59604644775390625ul,
            298023223876953125ul,
            1490116119384765625ul,
            7450580596923828125ul,
        };

        static constexpr u32 max_step = power_of_5.size() - 1;
        static constexpr u64 max_power = power_of_5[max_step];

        while (exponent >= max_step) {
            multiply_with_small(max_power);
            exponent -= max_step;
        }

        if (exponent > 0)
            multiply_with_small(power_of_5[exponent]);
    }

    void multiply_with_power_of_2(u32 exponent)
    {
        // It's cheaper to shift bits first since that creates at most 1 new word
        shift_bits(exponent % 64);
        shift_words(exponent / 64);
    }

    enum class CompareResult {
        Equal,
        GreaterThan,
        LessThan
    };

    CompareResult compare_to(MinimalBigInt const& other) const
    {
        if (m_used_length > other.m_used_length)
            return CompareResult::GreaterThan;

        if (m_used_length < other.m_used_length)
            return CompareResult::LessThan;

        // Now we know it's the same size
        for (size_t i = m_used_length; i > 0; --i) {
            auto our_word = m_words[i - 1];
            auto their_word = other.m_words[i - 1];

            if (our_word > their_word)
                return CompareResult::GreaterThan;
            if (their_word > our_word)
                return CompareResult::LessThan;
        }

        return CompareResult::Equal;
    }

private:
    void shift_words(u32 amount)
    {
        if (amount == 0)
            return;

        VERIFY(amount + m_used_length <= max_words_needed);

        for (size_t i = m_used_length + amount - 1; i > amount - 1; --i)
            m_words[i] = m_words[i - amount];

        for (size_t i = 0; i < amount; ++i)
            m_words[i] = 0;

        m_used_length += amount;
    }

    void shift_bits(u32 amount)
    {
        if (amount == 0)
            return;

        VERIFY(amount < 64);

        u32 inverse = 64 - amount;
        u64 last_word = 0;

        for (size_t i = 0; i < m_used_length; ++i) {
            u64 word = m_words[i];
            m_words[i] = (word << amount) | (last_word >> inverse);
            last_word = word;
        }

        u64 carry = last_word >> inverse;
        if (carry != 0)
            append(carry);
    }

    static constexpr Array<u64, 20> powers_of_ten_uint64 = {
        1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL,
        1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL,
        100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL,
        1000000000000000000UL, 10000000000000000000UL
    };

    void multiply_with_small(u64 value)
    {
        u64 carry = 0;
        for (size_t i = 0; i < m_used_length; ++i)
            m_words[i] = multiply_with_carry(m_words[i], value, carry);

        if (carry != 0)
            append(carry);
    }

    void add_small(u64 value)
    {
        bool overflow;
        size_t index = 0;
        while (value != 0 && index < m_used_length) {
            m_words[index] = add_with_overflow(m_words[index], value, overflow);

            value = overflow ? 1 : 0;
            ++index;
        }

        if (value != 0)
            append(value);
    }

    void add_digits(u64 value, size_t digits_for_value)
    {
        VERIFY(digits_for_value < powers_of_ten_uint64.size());

        multiply_with_small(powers_of_ten_uint64[digits_for_value]);
        add_small(value);
    }

    void append(u64 word)
    {
        VERIFY(m_used_length <= max_words_needed);
        m_words[m_used_length] = word;
        ++m_used_length;
    }

    // The max valid words we might need are log2(10^(769 + 342)), max digits + max exponent
    static constexpr size_t max_words_needed = 58;

    size_t m_used_length = 0;

    // FIXME: This is an array just to avoid allocations, but the max size is only needed for
    //        massive amount of digits, so a smaller vector would work for most cases.
    Array<u64, max_words_needed> m_words {};
};

static bool round_nearest_tie_even(FloatingPointBuilder& value, bool did_truncate_bits, i32 shift)
{
    VERIFY(shift == 11 || shift == 40);
    u64 mask = (1ull << shift) - 1;
    u64 halfway = 1ull << (shift - 1);

    u64 truncated_bits = value.mantissa & mask;
    bool is_halfway = truncated_bits == halfway;
    bool is_above = truncated_bits > halfway;

    value.mantissa >>= shift;
    value.exponent += shift;

    bool is_odd = (value.mantissa & 1) == 1;
    return is_above || (is_halfway && did_truncate_bits) || (is_halfway && is_odd);
}

template<typename T, typename Callback>
static void round(FloatingPointBuilder& value, Callback&& should_round_up)
{
    using FloatingRepr = FloatingPointInfo<T>;

    i32 mantissa_shift = 64 - FloatingRepr::mantissa_bits() - 1;
    if (-value.exponent >= mantissa_shift) {
        // This is a denormal so we have to shift????
        mantissa_shift = min(-value.exponent + 1, 64);
        if (should_round_up(value, mantissa_shift))
            ++value.mantissa;

        value.exponent = (value.mantissa < (1ull << FloatingRepr::mantissa_bits())) ? 0 : 1;
        return;
    }

    if (should_round_up(value, mantissa_shift))
        ++value.mantissa;

    // Mantissa might have been rounded so if it overflowed increase the exponent
    if (value.mantissa >= (2ull << FloatingRepr::mantissa_bits())) {
        value.mantissa = 0;
        ++value.exponent;
    } else {
        // Clear the implicit top bit
        value.mantissa &= ~(1ull << FloatingRepr::mantissa_bits());
    }

    // If we also overflowed the exponent make it infinity!
    if (value.exponent >= FloatingRepr::infinity_exponent()) {
        value.exponent = FloatingRepr::infinity_exponent();
        value.mantissa = 0;
    }
}

template<typename T>
static FloatingPointBuilder build_positive_double(MinimalBigInt& mantissa, i32 exponent)
{
    mantissa.multiply_with_power_of_10(exponent);

    FloatingPointBuilder result {};
    bool should_round_up_ties = false;
    // First we get the 64 most significant bits WARNING not masked to real mantissa yet
    result.mantissa = mantissa.top_64_bits(should_round_up_ties);

    i32 bias = FloatingPointInfo<T>::mantissa_bits() + FloatingPointInfo<T>::exponent_bias();
    result.exponent = mantissa.size_in_bits() - 64 + bias;

    round<T>(result, [should_round_up_ties](FloatingPointBuilder& value, i32 shift) {
        return round_nearest_tie_even(value, should_round_up_ties, shift);
    });
    return result;
}

template<ParseableFloatingPoint T>
static FloatingPointBuilder build_negative_exponent_double(MinimalBigInt& mantissa, i32 exponent, FloatingPointBuilder initial)
{
    VERIFY(exponent < 0);

    // Building a fraction from a big integer is harder to understand
    // But fundamentely we have mantissa * 10^-e and so divide by 5^f

    auto parts_copy = initial;
    round<T>(parts_copy, [](FloatingPointBuilder& value, i32 shift) {
        if (shift == 64)
            value.mantissa = 0;
        else
            value.mantissa >>= shift;

        value.exponent += shift;

        return false;
    });

    T rounded_down_double_value = parts_copy.template to_value<T>(false);
    auto exact_halfway_builder = FloatingPointBuilder::from_value(rounded_down_double_value);
    // halfway is exactly just the next bit 1 (rest implicit zeros)
    exact_halfway_builder.mantissa <<= 1;
    exact_halfway_builder.mantissa += 1;
    --exact_halfway_builder.exponent;

    MinimalBigInt rounded_down_full_mantissa { exact_halfway_builder.mantissa };

    // Scale halfway up with 5**(-e)
    if (u32 power_of_5 = -exponent; power_of_5 != 0)
        rounded_down_full_mantissa.multiply_with_power_of_5(power_of_5);

    i32 power_of_2 = exact_halfway_builder.exponent - exponent;
    if (power_of_2 > 0) {
        // halfway has lower exponent scale up to real exponent
        rounded_down_full_mantissa.multiply_with_power_of_2(power_of_2);
    } else if (power_of_2 < 0) {
        // halfway has higher exponent scale original mantissa up to real halfway
        mantissa.multiply_with_power_of_2(-power_of_2);
    }

    auto compared_to_halfway = mantissa.compare_to(rounded_down_full_mantissa);

    round<T>(initial, [compared_to_halfway](FloatingPointBuilder& value, i32 shift) {
        if (shift == 64) {
            value.mantissa = 0;
        } else {
            value.mantissa >>= shift;
        }
        value.exponent += shift;

        if (compared_to_halfway == MinimalBigInt::CompareResult::GreaterThan)
            return true;
        if (compared_to_halfway == MinimalBigInt::CompareResult::LessThan)
            return false;

        return (value.mantissa & 1) == 1;
    });

    return initial;
}

template<typename T>
static FloatingPointBuilder parse_arbitrarily_long_floating_point(BasicParseResult& result, FloatingPointBuilder initial)
{
    VERIFY(initial.exponent < 0);
    initial.exponent += FloatingPointBuilder::invalid_exponent_offset;

    VERIFY(result.exponent >= NumericLimits<i32>::min() && result.exponent <= NumericLimits<i32>::max());
    i32 exponent = static_cast<i32>(result.exponent);
    {
        u64 mantissa_copy = result.mantissa;

        while (mantissa_copy >= 10000) {
            mantissa_copy /= 10000;
            exponent += 4;
        }

        while (mantissa_copy >= 10) {
            mantissa_copy /= 10;
            ++exponent;
        }
    }

    size_t digits = 0;

    constexpr auto max_digits_to_parse = FloatingPointInfo<T>::max_possible_digits_needed_for_parsing();

    // Reparse mantissa into big int
    auto mantissa = MinimalBigInt::from_decimal_floating_point(result, digits, max_digits_to_parse);

    VERIFY(digits <= 1024);

    exponent += 1 - static_cast<i32>(digits);

    if (exponent >= 0)
        return build_positive_double<T>(mantissa, exponent);

    return build_negative_exponent_double<T>(mantissa, exponent, initial);
}

template<FloatingPoint T>
T parse_result_to_value(BasicParseResult& parse_result)
{
    using FloatingPointRepr = FloatingPointInfo<T>;

    if (parse_result.mantissa <= u64(2) << FloatingPointRepr::mantissa_bits()
        && parse_result.exponent >= -FloatingPointRepr::max_exact_power_of_10() && parse_result.exponent <= FloatingPointRepr::max_exact_power_of_10()
        && !parse_result.more_than_19_digits_with_overflow) {

        T value = parse_result.mantissa;
        VERIFY(u64(value) == parse_result.mantissa);

        if (parse_result.exponent < 0)
            value = value / FloatingPointRepr::power_of_ten(-parse_result.exponent);
        else
            value = value * FloatingPointRepr::power_of_ten(parse_result.exponent);

        if (parse_result.negative)
            value = -value;

        return value;
    }

    auto floating_point_parts = binary_to_decimal<T>(parse_result.mantissa, parse_result.exponent);
    if (parse_result.more_than_19_digits_with_overflow && floating_point_parts.exponent >= 0) {
        auto rounded_up_double_build = binary_to_decimal<T>(parse_result.mantissa + 1, parse_result.exponent);
        if (floating_point_parts.mantissa != rounded_up_double_build.mantissa || floating_point_parts.exponent != rounded_up_double_build.exponent) {
            floating_point_parts = fallback_binary_to_decimal<T>(parse_result.mantissa, parse_result.exponent);
            VERIFY(floating_point_parts.exponent < 0);
        }
    }

    if (floating_point_parts.exponent < 0) {
        // Invalid have to parse perfectly
        floating_point_parts = parse_arbitrarily_long_floating_point<T>(parse_result, floating_point_parts);
    }

    return floating_point_parts.template to_value<T>(parse_result.negative);
}

template<FloatingPoint T>
constexpr FloatingPointParseResults<T> parse_result_to_full_result(BasicParseResult parse_result)
{
    if (!parse_result.valid)
        return { nullptr, FloatingPointError::NoOrInvalidInput, __builtin_nan("") };

    FloatingPointParseResults<T> full_result {};
    full_result.end_ptr = parse_result.last_parsed;

    // We special case this to be able to differentiate between 0 and values rounded down to 0
    if (parse_result.mantissa == 0) {
        full_result.value = parse_result.negative ? -0. : 0.;
        return full_result;
    }

    full_result.value = parse_result_to_value<T>(parse_result);

    // The only way we can get infinity is from rounding up/down to it.
    if (__builtin_isinf(full_result.value))
        full_result.error = FloatingPointError::OutOfRange;
    else if (full_result.value == T(0.))
        full_result.error = FloatingPointError::RoundedDownToZero;

    return full_result;
}

template<FloatingPoint T>
FloatingPointParseResults<T> parse_first_floating_point(char const* start, char const* end)
{
    auto parse_result = parse_numbers(
        start,
        [end](char const* head) { return head == end; },
        [end](char const* head) { return head - end >= 8; });

    return parse_result_to_full_result<T>(parse_result);
}

template FloatingPointParseResults<double> parse_first_floating_point(char const* start, char const* end);

template FloatingPointParseResults<float> parse_first_floating_point(char const* start, char const* end);

template<FloatingPoint T>
FloatingPointParseResults<T> parse_first_floating_point_until_zero_character(char const* start)
{
    auto parse_result = parse_numbers(
        start,
        [](char const* head) { return *head == '\0'; },
        [](char const*) { return false; });

    return parse_result_to_full_result<T>(parse_result);
}

template FloatingPointParseResults<double> parse_first_floating_point_until_zero_character(char const* start);

template FloatingPointParseResults<float> parse_first_floating_point_until_zero_character(char const* start);

template<FloatingPoint T>
Optional<T> parse_floating_point_completely(char const* start, char const* end)
{
    auto parse_result = parse_numbers(
        start,
        [end](char const* head) { return head == end; },
        [end](char const* head) { return head - end >= 8; });

    if (!parse_result.valid || parse_result.last_parsed != end)
        return {};

    return parse_result_to_value<T>(parse_result);
}

template Optional<double> parse_floating_point_completely(char const* start, char const* end);

template Optional<float> parse_floating_point_completely(char const* start, char const* end);

struct HexFloatParseResult {
    bool is_negative = false;
    bool valid = false;
    char const* last_parsed = nullptr;
    u64 mantissa = 0;
    i64 exponent = 0;
};

static HexFloatParseResult parse_hexfloat(char const* start)
{
    HexFloatParseResult result {};
    if (start == nullptr || *start == '\0')
        return result;

    char const* parse_head = start;
    bool any_digits = false;
    bool truncated_non_zero = false;

    if (*parse_head == '-') {
        result.is_negative = true;
        ++parse_head;

        if (*parse_head == '\0' || (!is_ascii_hex_digit(*parse_head) && *parse_head != floating_point_decimal_separator))
            return result;
    } else if (*parse_head == '+') {
        ++parse_head;

        if (*parse_head == '\0' || (!is_ascii_hex_digit(*parse_head) && *parse_head != floating_point_decimal_separator))
            return result;
    }
    if (*parse_head == '0' && (*(parse_head + 1) != '\0') && (*(parse_head + 1) == 'x' || *(parse_head + 1) == 'X')) {
        // Skip potential 0[xX], we have to do this here since the sign comes at the front
        parse_head += 2;
    }

    auto add_mantissa_digit = [&] {
        any_digits = true;

        // We assume you already checked this is actually a digit
        auto digit = parse_ascii_hex_digit(*parse_head);

        // Because the power of sixteen is just scaling of power of two we don't
        // need to keep all the remaining digits beyond the first 52 bits, just because
        // it's easy we store the first 16 digits. However for rounding we do need to parse
        // all the digits and keep track if we see any non zero one.
        if (result.mantissa < (1ull << 60)) {
            result.mantissa = (result.mantissa * 16) + digit;
            return true;
        }

        if (digit != 0)
            truncated_non_zero = true;

        return false;
    };

    while (*parse_head != '\0' && is_ascii_hex_digit(*parse_head)) {
        add_mantissa_digit();

        ++parse_head;
    }

    if (*parse_head != '\0' && *parse_head == floating_point_decimal_separator) {
        ++parse_head;
        i64 digits_after_separator = 0;
        while (*parse_head != '\0' && is_ascii_hex_digit(*parse_head)) {
            // Track how many characters we actually read into the mantissa
            digits_after_separator += add_mantissa_digit() ? 1 : 0;

            ++parse_head;
        }

        // We parsed x digits after the dot so need to multiply with 2^(-x * 4)
        // Since every digit is 4 bits
        result.exponent = -digits_after_separator * 4;
    }

    if (!any_digits)
        return result;

    if (*parse_head != '\0' && (*parse_head == 'p' || *parse_head == 'P')) {
        [&] {
            auto const* head_before_p = parse_head;
            ArmedScopeGuard reset_ptr { [&] { parse_head = head_before_p; } };
            ++parse_head;

            if (*parse_head == '\0')
                return;

            bool exponent_is_negative = false;
            i64 explicit_exponent = 0;

            if (*parse_head == '-' || *parse_head == '+') {
                exponent_is_negative = *parse_head == '-';
                ++parse_head;
                if (*parse_head == '\0')
                    return;
            }

            if (!is_ascii_digit(*parse_head))
                return;

            // We have at least one digit (with optional preceding sign) so we will not reset
            reset_ptr.disarm();

            while (*parse_head != '\0' && is_ascii_digit(*parse_head)) {
                // If we hit exponent overflow the number is so huge we are in trouble anyway, see
                // a comment in parse_numbers.
                if (explicit_exponent < 0x10000000)
                    explicit_exponent = 10 * explicit_exponent + (*parse_head - '0');
                ++parse_head;
            }

            if (exponent_is_negative)
                explicit_exponent = -explicit_exponent;

            result.exponent += explicit_exponent;
        }();
    }

    result.valid = true;

    // Round up exactly halfway with truncated non zeros, but don't if it would cascade up
    if (truncated_non_zero && (result.mantissa & 0xF) != 0xF) {
        VERIFY(result.mantissa >= 0x1000'0000'0000'0000);
        result.mantissa |= 1;
    }

    result.last_parsed = parse_head;

    return result;
}

template<FloatingPoint T>
static FloatingPointBuilder build_hex_float(HexFloatParseResult& parse_result)
{
    using FloatingPointRepr = FloatingPointInfo<T>;
    VERIFY(parse_result.mantissa != 0);

    if (parse_result.exponent >= FloatingPointRepr::infinity_exponent())
        return FloatingPointBuilder::infinity<T>();

    auto leading_zeros = count_leading_zeroes(parse_result.mantissa);
    u64 normalized_mantissa = parse_result.mantissa << leading_zeros;

    // No need to multiply with some power of 5 here the exponent is already a power of 2.

    u8 upperbit = normalized_mantissa >> 63;
    FloatingPointBuilder parts;
    parts.mantissa = normalized_mantissa >> (upperbit + 64 - FloatingPointRepr::mantissa_bits() - 3);

    parts.exponent = parse_result.exponent + upperbit - leading_zeros + FloatingPointRepr::exponent_bias() + 62;

    if (parts.exponent <= 0) {
        // subnormal
        if (-parts.exponent + 1 >= 64) {
            parts.mantissa = 0;
            parts.exponent = 0;
            return parts;
        }

        parts.mantissa >>= -parts.exponent + 1;
        parts.mantissa += parts.mantissa & 1;
        parts.mantissa >>= 1;

        if (parts.mantissa < (1ull << FloatingPointRepr::mantissa_bits())) {
            parts.exponent = 0;
        } else {
            parts.exponent = 1;
        }

        return parts;
    }

    // Here we don't have to only do this halfway check for some exponents
    if ((parts.mantissa & 0b11) == 0b01) {
        // effectively all discard bits from z.high are 0
        if (normalized_mantissa == (parts.mantissa << (upperbit + 64 - FloatingPointRepr::mantissa_bits() - 3)))
            parts.mantissa &= ~u64(1);
    }

    parts.mantissa += parts.mantissa & 1;
    parts.mantissa >>= 1;

    if (parts.mantissa >= (2ull << FloatingPointRepr::mantissa_bits())) {
        parts.mantissa = 1ull << FloatingPointRepr::mantissa_bits();
        ++parts.exponent;
    }

    parts.mantissa &= ~(1ull << FloatingPointRepr::mantissa_bits());

    if (parts.exponent >= FloatingPointRepr::infinity_exponent()) {
        parts.mantissa = 0;
        parts.exponent = FloatingPointRepr::infinity_exponent();
    }

    return parts;
}

template<FloatingPoint T>
FloatingPointParseResults<T> parse_first_hexfloat_until_zero_character(char const* start)
{
    using FloatingPointRepr = FloatingPointInfo<T>;
    auto parse_result = parse_hexfloat(start);

    if (!parse_result.valid)
        return { nullptr, FloatingPointError::NoOrInvalidInput, __builtin_nan("") };

    FloatingPointParseResults<T> full_result {};
    full_result.end_ptr = parse_result.last_parsed;

    // We special case this to be able to differentiate between 0 and values rounded down to 0

    if (parse_result.mantissa == 0) {
        full_result.value = 0.;
        return full_result;
    }

    auto result = build_hex_float<T>(parse_result);
    full_result.value = result.template to_value<T>(parse_result.is_negative);

    if (result.exponent == FloatingPointRepr::infinity_exponent()) {
        VERIFY(result.mantissa == 0);
        full_result.error = FloatingPointError::OutOfRange;
    } else if (result.mantissa == 0 && result.exponent == 0) {
        full_result.error = FloatingPointError::RoundedDownToZero;
    }

    return full_result;
}

template FloatingPointParseResults<double> parse_first_hexfloat_until_zero_character(char const* start);

template FloatingPointParseResults<float> parse_first_hexfloat_until_zero_character(char const* start);

}