1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
/*
* Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/Format.h>
#include <AK/IntegralMath.h>
#include <AK/NumericLimits.h>
#include <AK/Types.h>
#ifndef KERNEL
# include <AK/Math.h>
#endif
namespace AK {
// FIXME: this always uses round to nearest break-tie to even
// FIXME: use the Integral concept to constrain Underlying
template<size_t precision, typename Underlying>
class FixedPoint {
using This = FixedPoint<precision, Underlying>;
constexpr static Underlying radix_mask = (static_cast<Underlying>(1) << precision) - 1;
template<size_t P, typename U>
friend class FixedPoint;
public:
constexpr FixedPoint() = default;
template<Integral I>
constexpr FixedPoint(I value)
: m_value(static_cast<Underlying>(value) << precision)
{
}
template<FloatingPoint F>
constexpr FixedPoint(F value)
: m_value(static_cast<Underlying>(value * (static_cast<Underlying>(1) << precision)))
{
}
template<size_t P, typename U>
explicit constexpr FixedPoint(FixedPoint<P, U> const& other)
: m_value(other.template cast_to<precision, Underlying>().m_value)
{
}
#ifndef KERNEL
template<FloatingPoint F>
explicit ALWAYS_INLINE operator F() const
{
return (F)m_value * pow<F>(0.5, precision);
}
#endif
template<Integral I>
explicit constexpr operator I() const
{
I value = m_value >> precision;
// fract(m_value) >= .5?
if (m_value & (1u << (precision - 1))) {
// fract(m_value) > .5?
if (m_value & (radix_mask >> 2u)) {
// yes: round "up";
value += (m_value > 0 ? 1 : -1);
} else {
// no: round to even;
value += value & 1;
}
}
return value;
}
constexpr Underlying raw() const
{
return m_value;
}
constexpr Underlying& raw()
{
return m_value;
}
constexpr This fract() const
{
return create_raw(m_value & radix_mask);
}
constexpr This round() const
{
return This { static_cast<Underlying>(*this) };
}
constexpr This floor() const
{
return create_raw(m_value & ~radix_mask);
}
constexpr This ceil() const
{
return create_raw((m_value & ~radix_mask)
+ (m_value & radix_mask ? 1 << precision : 0));
}
constexpr This trunk() const
{
return create_raw((m_value & ~radix_mask)
+ ((m_value & radix_mask)
? (m_value > 0 ? 0 : (1 << precision))
: 0));
}
constexpr Underlying lround() const { return static_cast<Underlying>(*this); }
constexpr Underlying lfloor() const { return m_value >> precision; }
constexpr Underlying lceil() const
{
return (m_value >> precision)
+ (m_value & radix_mask ? 1 : 0);
}
constexpr Underlying ltrunk() const
{
return (m_value >> precision)
+ ((m_value & radix_mask)
? m_value > 0 ? 0 : 1
: 0);
}
// http://www.claysturner.com/dsp/BinaryLogarithm.pdf
constexpr This log2() const
{
// 0.5
This b = create_raw(1 << (precision - 1));
This y = 0;
This x = *this;
// FIXME: There's no negative infinity.
if (x.raw() <= 0)
return create_raw(NumericLimits<Underlying>::min());
if (x != 1) {
i32 shift_amount = AK::log2<Underlying>(x.raw()) - precision;
if (shift_amount > 0)
x >>= shift_amount;
else
x <<= -shift_amount;
y += shift_amount;
}
for (size_t i = 0; i < precision; ++i) {
x *= x;
if (x >= 2) {
x >>= 1;
y += b;
}
b >>= 1;
}
return y;
}
constexpr bool signbit() const requires(IsSigned<Underlying>)
{
return m_value >> (sizeof(Underlying) * 8 - 1);
}
constexpr This operator-() const requires(IsSigned<Underlying>)
{
return create_raw(-m_value);
}
constexpr This operator+(This const& other) const
{
return create_raw(m_value + other.m_value);
}
constexpr This operator-(This const& other) const
{
return create_raw(m_value - other.m_value);
}
constexpr This operator*(This const& other) const
{
// FIXME: Potential Overflow, although result could be represented accurately
Underlying value = m_value * other.raw();
This ret {};
ret.raw() = value >> precision;
// fract(value) >= .5?
if (value & (1u << (precision - 1))) {
// fract(value) > .5?
if (value & (radix_mask >> 2u)) {
// yes: round up;
ret.raw() += (value > 0 ? 1 : -1);
} else {
// no: round to even (aka unset last sigificant bit);
ret.raw() += m_value & 1;
}
}
return ret;
}
constexpr This operator/(This const& other) const
{
// FIXME: Better rounding?
return create_raw((m_value / other.m_value) << (precision));
}
template<Integral I>
constexpr This operator+(I other) const
{
return create_raw(m_value + (other << precision));
}
template<Integral I>
constexpr This operator-(I other) const
{
return create_raw(m_value - (other << precision));
}
template<Integral I>
constexpr This operator*(I other) const
{
return create_raw(m_value * other);
}
template<Integral I>
constexpr This operator/(I other) const
{
return create_raw(m_value / other);
}
template<Integral I>
constexpr This operator>>(I other) const
{
return create_raw(m_value >> other);
}
template<Integral I>
constexpr This operator<<(I other) const
{
return create_raw(m_value << other);
}
This& operator+=(This const& other)
{
m_value += other.raw();
return *this;
}
This& operator-=(This const& other)
{
m_value -= other.raw();
return *this;
}
This& operator*=(This const& other)
{
Underlying value = m_value * other.raw();
m_value = value >> precision;
// fract(value) >= .5?
if (value & (1u << (precision - 1))) {
// fract(value) > .5?
if (value & (radix_mask >> 2u)) {
// yes: round up;
m_value += (value > 0 ? 1 : -1);
} else {
// no: round to even (aka unset last sigificant bit);
m_value += m_value & 1;
}
}
return *this;
}
This& operator/=(This const& other)
{
// FIXME: See above
m_value /= other.raw();
m_value <<= precision;
return *this;
}
template<Integral I>
This& operator+=(I other)
{
m_value += other << precision;
return *this;
}
template<Integral I>
This& operator-=(I other)
{
m_value -= other << precision;
return *this;
}
template<Integral I>
This& operator*=(I other)
{
m_value *= other;
return *this;
}
template<Integral I>
This& operator/=(I other)
{
m_value /= other;
return *this;
}
template<Integral I>
This& operator>>=(I other)
{
m_value >>= other;
return *this;
}
template<Integral I>
This& operator<<=(I other)
{
m_value <<= other;
return *this;
}
bool operator==(This const& other) const { return raw() == other.raw(); }
bool operator!=(This const& other) const { return raw() != other.raw(); }
bool operator>(This const& other) const { return raw() > other.raw(); }
bool operator>=(This const& other) const { return raw() >= other.raw(); }
bool operator<(This const& other) const { return raw() < other.raw(); }
bool operator<=(This const& other) const { return raw() <= other.raw(); }
// FIXE: There are probably better ways to do these
template<Integral I>
bool operator==(I other) const
{
return m_value >> precision == other && !(m_value & radix_mask);
}
template<Integral I>
bool operator!=(I other) const
{
return (m_value >> precision) != other || m_value & radix_mask;
}
template<Integral I>
bool operator>(I other) const
{
return !(*this <= other);
}
template<Integral I>
bool operator>=(I other) const
{
return !(*this < other);
}
template<Integral I>
bool operator<(I other) const
{
return (m_value >> precision) < other || m_value < (other << precision);
}
template<Integral I>
bool operator<=(I other) const
{
return *this < other || *this == other;
}
// Casting from a float should be faster than casting to a float
template<FloatingPoint F>
bool operator==(F other) const { return *this == (This)other; }
template<FloatingPoint F>
bool operator!=(F other) const { return *this != (This)other; }
template<FloatingPoint F>
bool operator>(F other) const { return *this > (This)other; }
template<FloatingPoint F>
bool operator>=(F other) const { return *this >= (This)other; }
template<FloatingPoint F>
bool operator<(F other) const { return *this < (This)other; }
template<FloatingPoint F>
bool operator<=(F other) const { return *this <= (This)other; }
template<size_t P, typename U>
operator FixedPoint<P, U>() const
{
return cast_to<P, U>();
}
private:
template<size_t P, typename U>
constexpr FixedPoint<P, U> cast_to() const
{
U raw_value = static_cast<U>(m_value >> precision) << P;
if constexpr (precision > P)
raw_value |= (m_value & radix_mask) >> (precision - P);
else if constexpr (precision < P)
raw_value |= static_cast<U>(m_value & radix_mask) << (P - precision);
else
raw_value |= m_value & radix_mask;
return FixedPoint<P, U>::create_raw(raw_value);
}
static This create_raw(Underlying value)
{
This t {};
t.raw() = value;
return t;
}
Underlying m_value;
};
}
using AK::FixedPoint;
|