summaryrefslogtreecommitdiff
path: root/AK/DisjointChunks.h
blob: 8a93f80e631cbf5ba1c04fb4f34239472be1382b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/*
 * Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
 * Copyright (c) 2022, kleines Filmröllchen <filmroellchen@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/AllOf.h>
#include <AK/Forward.h>
#include <AK/Span.h>
#include <AK/StdLibExtras.h>
#include <AK/Try.h>

namespace AK {

template<typename ChunkType, bool IsConst>
struct DisjointIterator {
    struct EndTag {
    };
    using ReferenceType = Conditional<IsConst, AddConst<Vector<ChunkType>>, Vector<ChunkType>>&;

    DisjointIterator(ReferenceType chunks)
        : m_chunks(chunks)
    {
        while (m_chunk_index < m_chunks.size() && m_chunks[m_chunk_index].is_empty())
            ++m_chunk_index;
    }

    DisjointIterator(ReferenceType chunks, EndTag)
        : m_chunk_index(chunks.size())
        , m_index_in_chunk(0)
        , m_chunks(chunks)
    {
    }

    DisjointIterator& operator++()
    {
        if (m_chunk_index >= m_chunks.size())
            return *this;

        auto& chunk = m_chunks[m_chunk_index];
        if (m_index_in_chunk + 1 >= chunk.size()) {
            ++m_chunk_index;
            m_index_in_chunk = 0;
        } else {
            ++m_index_in_chunk;
        }
        if (m_chunk_index < m_chunks.size()) {
            while (m_chunks[m_chunk_index].is_empty())
                ++m_chunk_index;
        }
        return *this;
    }

    bool operator==(DisjointIterator const& other) const
    {
        return &other.m_chunks == &m_chunks && other.m_index_in_chunk == m_index_in_chunk && other.m_chunk_index == m_chunk_index;
    }

    auto& operator*() requires(!IsConst) { return m_chunks[m_chunk_index][m_index_in_chunk]; }
    auto* operator->() requires(!IsConst) { return &m_chunks[m_chunk_index][m_index_in_chunk]; }
    auto const& operator*() const { return m_chunks[m_chunk_index][m_index_in_chunk]; }
    auto const* operator->() const { return &m_chunks[m_chunk_index][m_index_in_chunk]; }

private:
    size_t m_chunk_index { 0 };
    size_t m_index_in_chunk { 0 };
    ReferenceType m_chunks;
};

template<typename T>
class DisjointSpans {
public:
    DisjointSpans() = default;
    ~DisjointSpans() = default;
    DisjointSpans(DisjointSpans const&) = default;
    DisjointSpans(DisjointSpans&&) = default;

    explicit DisjointSpans(Vector<Span<T>> spans)
        : m_spans(move(spans))
    {
    }

    DisjointSpans& operator=(DisjointSpans&&) = default;
    DisjointSpans& operator=(DisjointSpans const&) = default;

    bool operator==(DisjointSpans const& other) const
    {
        if (other.size() != size())
            return false;

        auto it = begin();
        auto other_it = other.begin();
        for (; it != end(); ++it, ++other_it) {
            if (*it != *other_it)
                return false;
        }
        return true;
    }

    T& operator[](size_t index) { return at(index); }
    T const& operator[](size_t index) const { return at(index); }
    T const& at(size_t index) const { return const_cast<DisjointSpans&>(*this).at(index); }
    T& at(size_t index)
    {
        auto value = find(index);
        VERIFY(value != nullptr);
        return *value;
    }
    T* find(size_t index)
    {
        auto span_and_offset = span_around(index);
        if (span_and_offset.offset >= span_and_offset.span.size())
            return nullptr;
        return &span_and_offset.span.at(span_and_offset.offset);
    }
    T const* find(size_t index) const
    {
        return const_cast<DisjointSpans*>(this)->find(index);
    }

    size_t size() const
    {
        size_t size = 0;
        for (auto& span : m_spans)
            size += span.size();
        return size;
    }

    bool is_empty() const
    {
        return all_of(m_spans, [](auto& span) { return span.is_empty(); });
    }

    DisjointSpans slice(size_t start, size_t length) const
    {
        DisjointSpans spans;
        for (auto& span : m_spans) {
            if (length == 0)
                break;
            if (start >= span.size()) {
                start -= span.size();
                continue;
            }

            auto sliced_length = min(length, span.size() - start);
            spans.m_spans.append(span.slice(start, sliced_length));
            start = 0;
            length -= sliced_length;
        }
        // Make sure that we weren't asked to make a slice larger than possible.
        VERIFY(length == 0);
        return spans;
    }
    DisjointSpans slice(size_t start) const { return slice(start, size() - start); }
    DisjointSpans slice_from_end(size_t length) const { return slice(size() - length, length); }

    DisjointIterator<Span<T>, false> begin() { return { m_spans }; }
    DisjointIterator<Span<T>, false> end() { return { m_spans, {} }; }
    DisjointIterator<Span<T>, true> begin() const { return { m_spans }; }
    DisjointIterator<Span<T>, true> end() const { return { m_spans, {} }; }

private:
    struct SpanAndOffset {
        Span<T>& span;
        size_t offset;
    };
    SpanAndOffset span_around(size_t index)
    {
        size_t offset = 0;
        for (auto& span : m_spans) {
            if (span.is_empty())
                continue;
            auto next_offset = span.size() + offset;
            if (next_offset <= index) {
                offset = next_offset;
                continue;
            }

            return { span, index - offset };
        }

        return { m_spans.last(), index - (offset - m_spans.last().size()) };
    }

    Vector<Span<T>> m_spans;
};

namespace Detail {

template<typename T, typename ChunkType>
ChunkType shatter_chunk(ChunkType& source_chunk, size_t start, size_t sliced_length)
{
    auto wanted_slice = source_chunk.span().slice(start, sliced_length);

    ChunkType new_chunk;
    if constexpr (IsTriviallyConstructible<T>) {
        new_chunk.resize(wanted_slice.size());

        TypedTransfer<T>::move(new_chunk.data(), wanted_slice.data(), wanted_slice.size());
    } else {
        new_chunk.ensure_capacity(wanted_slice.size());
        for (auto& entry : wanted_slice)
            new_chunk.unchecked_append(move(entry));
    }
    source_chunk.remove(start, sliced_length);
    return new_chunk;
}

template<typename T>
FixedArray<T> shatter_chunk(FixedArray<T>& source_chunk, size_t start, size_t sliced_length)
{
    auto wanted_slice = source_chunk.span().slice(start, sliced_length);

    FixedArray<T> new_chunk = FixedArray<T>::must_create_but_fixme_should_propagate_errors(wanted_slice.size());
    if constexpr (IsTriviallyConstructible<T>) {
        TypedTransfer<T>::move(new_chunk.data(), wanted_slice.data(), wanted_slice.size());
    } else {
        // FIXME: propagate errors
        auto copied_chunk = MUST(FixedArray<T>::try_create(wanted_slice));
        new_chunk.swap(copied_chunk);
    }
    // FIXME: propagate errors
    auto rest_of_chunk = MUST(FixedArray<T>::try_create(source_chunk.span().slice(start)));
    source_chunk.swap(rest_of_chunk);
    return new_chunk;
}

}

template<typename T, typename ChunkType = Vector<T>>
class DisjointChunks {
public:
    DisjointChunks() = default;
    ~DisjointChunks() = default;
    DisjointChunks(DisjointChunks const&) = default;
    DisjointChunks(DisjointChunks&&) = default;

    DisjointChunks& operator=(DisjointChunks&&) = default;
    DisjointChunks& operator=(DisjointChunks const&) = default;

    void append(ChunkType&& chunk) { m_chunks.append(move(chunk)); }
    void extend(DisjointChunks&& chunks) { m_chunks.extend(move(chunks.m_chunks)); }
    void extend(DisjointChunks const& chunks) { m_chunks.extend(chunks.m_chunks); }

    ChunkType& first_chunk() { return m_chunks.first(); }
    ChunkType& last_chunk() { return m_chunks.last(); }
    ChunkType const& first_chunk() const { return m_chunks.first(); }
    ChunkType const& last_chunk() const { return m_chunks.last(); }

    void ensure_capacity(size_t needed_capacity)
    {
        m_chunks.ensure_capacity(needed_capacity);
    }

    void insert(size_t index, T value)
    {
        if (m_chunks.size() == 1)
            return m_chunks.first().insert(index, value);
        auto chunk_and_offset = chunk_around(index);
        if (!chunk_and_offset.chunk) {
            m_chunks.empend();
            chunk_and_offset.chunk = &m_chunks.last();
        }

        chunk_and_offset.chunk->insert(chunk_and_offset.offset, move(value));
    }

    void clear() { m_chunks.clear(); }

    T& operator[](size_t index) { return at(index); }
    T const& operator[](size_t index) const { return at(index); }
    T const& at(size_t index) const { return const_cast<DisjointChunks&>(*this).at(index); }
    T& at(size_t index)
    {
        auto value = find(index);
        VERIFY(value != nullptr);
        return *value;
    }

    T* find(size_t index)
    {
        if (m_chunks.size() == 1) {
            if (m_chunks.first().size() > index)
                return &m_chunks.first().at(index);
            return nullptr;
        }
        auto chunk_and_offset = chunk_around(index);
        if (!chunk_and_offset.chunk || chunk_and_offset.offset >= chunk_and_offset.chunk->size())
            return nullptr;
        return &chunk_and_offset.chunk->at(chunk_and_offset.offset);
    }

    T const* find(size_t index) const
    {
        return const_cast<DisjointChunks*>(this)->find(index);
    }

    size_t size() const
    {
        size_t sum = 0;
        for (auto& chunk : m_chunks)
            sum += chunk.size();
        return sum;
    }

    bool is_empty() const
    {
        return all_of(m_chunks, [](auto& chunk) { return chunk.is_empty(); });
    }

    DisjointSpans<T> spans() const&
    {
        Vector<Span<T>> spans;
        spans.ensure_capacity(m_chunks.size());
        for (auto& chunk : m_chunks)
            spans.unchecked_append(const_cast<ChunkType&>(chunk).span());
        return DisjointSpans<T> { move(spans) };
    }

    bool operator==(DisjointChunks const& other) const
    {
        if (other.size() != size())
            return false;

        auto it = begin();
        auto other_it = other.begin();
        for (; it != end(); ++it, ++other_it) {
            if (*it != *other_it)
                return false;
        }
        return true;
    }

    DisjointChunks release_slice(size_t start, size_t length) & { return move(*this).slice(start, length); }
    DisjointChunks release_slice(size_t start) & { return move(*this).slice(start); }

    DisjointChunks slice(size_t start, size_t length) &&
    {
        DisjointChunks result;
        for (auto& chunk : m_chunks) {
            if (length == 0)
                break;
            if (start >= chunk.size()) {
                start -= chunk.size();
                continue;
            }

            auto sliced_length = min(length, chunk.size() - start);
            if (start == 0 && sliced_length == chunk.size()) {
                // Happy path! move the chunk itself.
                result.m_chunks.append(move(chunk));
            } else {
                // Shatter the chunk, we were asked for only a part of it :(
                auto new_chunk = Detail::shatter_chunk<T>(chunk, start, sliced_length);

                result.m_chunks.append(move(new_chunk));
            }
            start = 0;
            length -= sliced_length;
        }

        m_chunks.remove_all_matching([](auto& chunk) { return chunk.is_empty(); });

        // Make sure that we weren't asked to make a slice larger than possible.
        VERIFY(length == 0);
        return result;
    }
    DisjointChunks slice(size_t start) && { return move(*this).slice(start, size() - start); }
    DisjointChunks slice_from_end(size_t length) && { return move(*this).slice(size() - length, length); }

    void flatten()
    {
        if (m_chunks.is_empty())
            return;

        auto size = this->size();
        auto& first_chunk = m_chunks.first();
        first_chunk.ensure_capacity(size);
        bool first = true;
        for (auto& chunk : m_chunks) {
            if (first) {
                first = false;
                continue;
            }

            first_chunk.extend(move(chunk));
        }
        m_chunks.remove(1, m_chunks.size() - 1);
    }

    DisjointIterator<ChunkType, false> begin() { return { m_chunks }; }
    DisjointIterator<ChunkType, false> end() { return { m_chunks, {} }; }
    DisjointIterator<ChunkType, true> begin() const { return { m_chunks }; }
    DisjointIterator<ChunkType, true> end() const { return { m_chunks, {} }; }

private:
    struct ChunkAndOffset {
        ChunkType* chunk;
        size_t offset;
    };
    ChunkAndOffset chunk_around(size_t index)
    {
        if (m_chunks.is_empty())
            return { nullptr, index };

        size_t offset = 0;
        for (auto& chunk : m_chunks) {
            if (chunk.is_empty())
                continue;
            auto next_offset = chunk.size() + offset;
            if (next_offset <= index) {
                offset = next_offset;
                continue;
            }

            return { &chunk, index - offset };
        }

        return { &m_chunks.last(), index - (offset - m_chunks.last().size()) };
    }

    Vector<ChunkType> m_chunks;
};

}

using AK::DisjointChunks;
using AK::DisjointSpans;