1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
/*
* Copyright (c) 2021, Cesar Torres <shortanemoia@protonmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#if __has_include(<math.h>)
# define AKCOMPLEX_CAN_USE_MATH_H
# include <math.h>
#endif
#ifdef __cplusplus
# if __cplusplus >= 201103L
# define COMPLEX_NOEXCEPT noexcept
# endif
namespace AK {
template<AK::Concepts::Arithmetic T>
class [[gnu::packed]] Complex {
public:
constexpr Complex()
: m_real(0)
, m_imag(0)
{
}
constexpr Complex(T real)
: m_real(real)
, m_imag((T)0)
{
}
constexpr Complex(T real, T imaginary)
: m_real(real)
, m_imag(imaginary)
{
}
constexpr T real() const COMPLEX_NOEXCEPT { return m_real; }
constexpr T imag() const COMPLEX_NOEXCEPT { return m_imag; }
constexpr T magnitude_squared() const COMPLEX_NOEXCEPT { return m_real * m_real + m_imag * m_imag; }
# ifdef AKCOMPLEX_CAN_USE_MATH_H
constexpr T magnitude() const COMPLEX_NOEXCEPT
{
// for numbers 32 or under bit long we don't need the extra precision of sqrt
// although it may return values with a considerable error if real and imag are too big?
if constexpr (sizeof(T) <= sizeof(float)) {
return sqrtf(m_real * m_real + m_imag * m_imag);
} else if constexpr (sizeof(T) <= sizeof(double)) {
return sqrt(m_real * m_real + m_imag * m_imag);
} else {
return sqrtl(m_real * m_real + m_imag * m_imag);
}
}
constexpr T phase() const COMPLEX_NOEXCEPT
{
return atan2(m_imag, m_real);
}
template<AK::Concepts::Arithmetic U, AK::Concepts::Arithmetic V>
static constexpr Complex<T> from_polar(U magnitude, V phase)
{
if constexpr (sizeof(T) <= sizeof(float)) {
return Complex<T>(magnitude * cosf(phase), magnitude * sinf(phase));
} else if constexpr (sizeof(T) <= sizeof(double)) {
return Complex<T>(magnitude * cos(phase), magnitude * sin(phase));
} else {
return Complex<T>(magnitude * cosl(phase), magnitude * sinl(phase));
}
}
# endif
template<AK::Concepts::Arithmetic U>
constexpr Complex<T>& operator=(const Complex<U>& other)
{
m_real = other.real();
m_imag = other.imag();
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T>& operator=(const U& x)
{
m_real = x;
m_imag = 0;
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator+=(const Complex<U>& x)
{
m_real += x.real();
m_imag += x.imag();
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator+=(const U& x)
{
m_real += x.real();
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator-=(const Complex<U>& x)
{
m_real -= x.real();
m_imag -= x.imag();
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator-=(const U& x)
{
m_real -= x.real();
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator*=(const Complex<U>& x)
{
const T real = m_real;
m_real = real * x.real() - m_imag * x.imag();
m_imag = real * x.imag() + m_imag * x.real();
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator*=(const U& x)
{
m_real *= x;
m_imag *= x;
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator/=(const Complex<U>& x)
{
const T real = m_real;
const T divisor = x.real() * x.real() + x.imag() * x.imag();
m_real = (real * x.real() + m_imag * x.imag()) / divisor;
m_imag = (m_imag * x.real() - x.real() * x.imag()) / divisor;
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator/=(const U& x)
{
m_real /= x;
m_imag /= x;
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator+(const Complex<U>& a)
{
Complex<T> x = *this;
x += a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator+(const U& a)
{
Complex<T> x = *this;
x += a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator-(const Complex<U>& a)
{
Complex<T> x = *this;
x -= a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator-(const U& a)
{
Complex<T> x = *this;
x -= a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator*(const Complex<U>& a)
{
Complex<T> x = *this;
x *= a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator*(const U& a)
{
Complex<T> x = *this;
x *= a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator/(const Complex<U>& a)
{
Complex<T> x = *this;
x /= a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator/(const U& a)
{
Complex<T> x = *this;
x /= a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr bool operator==(const Complex<U>& a) const
{
return (this->real() == a.real()) && (this->imag() == a.imag());
}
template<AK::Concepts::Arithmetic U>
constexpr bool operator!=(const Complex<U>& a) const
{
return !(*this == a);
}
constexpr Complex<T> operator+()
{
return *this;
}
constexpr Complex<T> operator-()
{
return Complex<T>(-m_real, -m_imag);
}
private:
T m_real;
T m_imag;
};
// reverse associativity operators for scalars
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
constexpr Complex<T> operator+(const U& b, const Complex<T>& a)
{
Complex<T> x = a;
x += b;
return x;
}
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
constexpr Complex<T> operator-(const U& b, const Complex<T>& a)
{
Complex<T> x = a;
x -= b;
return x;
}
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
constexpr Complex<T> operator*(const U& b, const Complex<T>& a)
{
Complex<T> x = a;
x *= b;
return x;
}
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
constexpr Complex<T> operator/(const U& b, const Complex<T>& a)
{
Complex<T> x = a;
x /= b;
return x;
}
// some identities
template<AK::Concepts::Arithmetic T>
static constinit Complex<T> complex_real_unit = Complex<T>((T)1, (T)0);
template<AK::Concepts::Arithmetic T>
static constinit Complex<T> complex_imag_unit = Complex<T>((T)0, (T)1);
# ifdef AKCOMPLEX_CAN_USE_MATH_H
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
static constexpr bool approx_eq(const Complex<T>& a, const Complex<U>& b, const double margin = 0.000001)
{
const auto x = const_cast<Complex<T>&>(a) - const_cast<Complex<U>&>(b);
return x.magnitude() <= margin;
}
// complex version of exp()
template<AK::Concepts::Arithmetic T>
static constexpr Complex<T> cexp(const Complex<T>& a)
{
// FIXME: this can probably be faster and not use so many expensive trigonometric functions
if constexpr (sizeof(T) <= sizeof(float)) {
return expf(a.real()) * Complex<T>(cosf(a.imag()), sinf(a.imag()));
} else if constexpr (sizeof(T) <= sizeof(double)) {
return exp(a.real()) * Complex<T>(cos(a.imag()), sin(a.imag()));
} else {
return expl(a.real()) * Complex<T>(cosl(a.imag()), sinl(a.imag()));
}
}
}
# endif
using AK::Complex;
using AK::complex_imag_unit;
using AK::complex_real_unit;
# ifdef AKCOMPLEX_CAN_USE_MATH_H
using AK::approx_eq;
using AK::cexp;
# endif
#endif
|